
NOTES ON

Object Oriented Programming using

Java
MCA I Year/I Semester

(2023-24)

By

SYEDA BASEER UNNISA BEGUM
(Sr.ASSISTANT PROFESSOR)

DEPARTMENT OF MCA
RAMNATH GULJARILAL KEDIA COLLEGE OF COMMERCE

3-1-336,OPP NEW CHADERGHAT BRIDGE,

Kachiguda Station Road,

Esamia Bazar,Hyderabad-500027,Telangana,India.

(PCC103) Object Oriented Programming using Java

Course Objectives

1. Learn the basics of object oriented programming

2. Study Java I/O mechanisms 3. Explore Java API

4. Develop graphics based Java programs 5. Learn swing framework

Course Outcomes

1. Explain OOPs features and concepts

2. Write basic Java programs 3. Write I/O programs in Java

4. Use various built-in Java classes and methods 5. Create window based Java programs

Suggested Readings:

1. Herbert Schildt, The Complete Reference Java, 9th Edition, Tata McGraw Hill, 2005.

2. Bruce Eckel, Thinking in Java, 4th Edition, Pearson Education

3. Dietel and Dietel, Java: How to Program, 5th Edition, Prentice Hall

4. James M Slack, Programming and Problem solving with JAVA, Thomson Learning, 2002

5. C Thomas Wu, An Introduction to Object Oriented programming with Java, Tata McGraw Hill, 2005.

6. Kathy Sierra, Bert Bates ,Head First Java, 2nd Edition, A Brain-Friendly Guide, Publisher: O'Reilly Media,
 February 2005.

UNIT - I

Introduction

Everywhere you look in the real world you see objects—people, animals, plants, cars, planes,
buildings, computers and so on. Humans think in terms of objects. Telephones, houses, traffic lights,
microwave ovens and water coolers are just a few more objects. Computer programs, such as the
Java programs you’ll read in this is interacting software objects.

We sometimes divide objects into two categories: animate and inanimate. Animate objects are

―alive‖ they in move some around and sense do things. —Inanimate objects, on the other hand, do

not move on their own .Objects of both types, however, have some things in common. They all have

attributes (e.g., size, shape, color and weight), and they all exhibit behaviors (e.g., a ball rolls,
bounces, inflates and deflates; a baby cries, sleep crawls, walks and blinks; a car accelerates, brakes

and turns; a towel absorbs water). We will study the kinds of attributes and behaviors that software
objects have. Humans learn about existing objects by studying their attributes and observing their

behaviors. Different objects can have similar attributes and can exhibit similar behaviors.
Comparisons can be made, for example, between babies and adults and between humans and

chimpanzees. Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their attributes and behaviors just as we describe real-

world objects. OOD also models communication between objects. Just as people send messages to

one another (e.g., a sergeant commands a soldier to stand at attention), objects also communicate via
messages. A bank account object may receive a message to decrease its balance by a certain amount

because the customer has withdrawn that amount of money.

Object-Oriented:

Although influenced by its predecessors, Java was not designed to be source-code compatible with
any other language. This allowed the Java team the freedom to design with a blank slate. One
outcome of this was a clean, usable, pragmatic approach to objects. Borrowing liberally from many
seminal object-software environments of the last few decades, Java manages to strike a balance
between the purist’s―everything is of my way model. The object model in Java such as integers, are
kept as high-performance non objects.

OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects, an object’s
attributes and operations are intim information hiding. This means that objects may know how to
communicate with one another across well-defined interfaces, but normally they are not allowed to
know how other objects are implemented, implementation details are hidden within the objects
themselves. We can drive a car effectively, for instance, without knowing the details of how engines,
transmissions, brakes and exhaust systems work internally—as long as we know how to use the
accelerator pedal, the brake pedal, the wheel and so on. Information hiding, as we will see, is crucial
to good software engineering.

Languages like Java are object oriented. Programming in such a language is called object-oriented
programming (OOP), and it allows computer programmers to implement an object-oriented design as a
working system. Languages like C, on the other hand, are procedural, so programming tends to be action
oriented. In C, the unit of programming is the function. Groups of actions that perform some common task are
formed into functions, and functions are grouped to form programs. In Java, the unit of programming is the
class from which objects are eventually instantiated (created). Java classes contain methods (which implement
operations and are similar to functions in C) as well as fields (which implement attributes).

Java programmers concentrate on creating classes. Each class contains fields, and the set of methods that
manipulate the fields and provide services to clients (i.e., other classes that use the class). The programmer
uses existing classes as the building blocks for constructing new classes. Classes are to objects as blueprints
are to houses. Just as we can build many houses from one blueprint, we can instantiate (create) many objects
from one class.
Classescanhaverelationshipswithotherclasses.Forexample,inanobject-orienteddesignofabank,the ―bank teller‖
class needs to relate―safe‖ class, and so on. These relationships

Packaging software as classes makes it possible for future software systems to reuse the classes. Groups of
related classes are often packaged as reusable components. Just as realtors often say that the three most
important factors affect location,‖ people in the software community affecting the future of software
development are―reuse, classes when building new classes and programs saves time and effort. Reuse also
helps

programmers build more reliable and effective systems, because existing classes and components often have
gone through extensive testing, debugging and performance tuning.

Indeed, with object technology, you can build much of the software you will need by combining classes, just
as automobile manufacturers combine interchangeable parts. Each new class you create will have the potential
to become a valuable software asset that you and other programmers can use to speed and enhance the quality
of future software development efforts.

NEED FOR OOP PARADIGM:

Object-Oriented Programming:

Object-oriented programming is at the core of Java. In fact, all Java programs are object-oriented
this isn’t an option the way that it is Therefore, this chapter begins with a discussion of the theoretical
aspects of OOP.

Two Paradigms of Programming:

As you know, all computer programs consist of two elements: code and data. Furthermore,a
program can be conceptually organized around its code or around its data. That is, some
programs are writtenhappening‖aroundand―whatothersis are wri affected.‖ These are the two
paradigms that g

The first way is called the process-oriented model. This approach characterizes a program as a
series of linear steps (that is, code). The process-oriented model can be thought of as code acting
on data. Procedural languages such as C employ this model to considerable success. Problems
with this approach appear as programs grow larger and more complex. To manage increasing
complexity, the second approach, called object-oriented programming, was conceived.

Object-oriented programming organizes a program around its data (that is, objects) and a set of
well-defined interfaces to that data. An object-oriented program can be characterized as data
controlling access to code. As you will see, by switching the controlling entity to data, you can
achieve several organizational benefits.

Procedure oriented Programming:

In this approach, the problem is always considered as a sequence of tasks to be done. A number

of functions are written to accomplish these attention on data.

There are many high level languages like COBOL, FORTRAN, PASCAL, C used for
conventional programming commonly known as POP.

POP basically consists of writing a list of instructions for the computer to follow, and organizing
these instructions into groups known as functions.

A typical POP structure is shown in below: Normally a flowchart is used to organize these
actions and represent the flow of control logically sequential flow from one to another. In a
multi-function program, many important data items are placed as global so that they may be
accessed by all the functions. Each function may have its own local data. Global data are more
vulnerable to an in advent change by a function. In a large program it is very difficult to identify
what data is used by which function. In case we need to revise an external data structure, we
should also revise all the functions that access the data. This provides an opportunity for bugs to
creep in.

Drawback: It does not model real world problems very well, because functions are action
oriented and do not really corresponding to the elements of the problem.

Characteristics of POP:

Emphasis is on doing actions.

Large programs are divided into smaller programs known as functions.

Most of the functions shared global data.

Data move openly around the program from function to function.

Functions transform data from one form to another.

Employs top-down approach in program design.

OOP:

OOP allows us to decompose a problem into a number of entities called objects and then builds
data and methods around these entities.

DEF: OOP is an approach that provides a way of modularizing programs by creating portioned
memory area for both data and methods that can used as templates for creating copies of such
modules on demand.

That is ,an object a considered to be a partitioned area of computer memory that stores data and
set of operations that can access that data. Since the memory partitions are independent, the
objects can be used in a variety of different programs without modifications.

OOP Chars:

Emphasis on data .

Programs are divided into what are known as methods.

Data structures are designed such that they characterize the objects.

Methods that operate on the data of an object are tied together .

Data is hidden.

Objects can communicate with each other through methods.

Reusability.

Follows bottom-up approach in program design.

Organization of OOP:

Evolution of Computing and Programming: Computer use is increasing in almost every field
of endeavor. Computing costs have been decreasing dramatically due to rapid developments in
both hardware and software technologies. Computers that might have filled large rooms and cost
millions of dollars decades ago can now be inscribed on silicon chips smaller than a fingernail,
costing perhaps a few dollars each. Fortunately, silicon is one of the most abundant materials on
earth it is an ingredient in common sand. Silicon chip technology has made computing so
economical that about a billion general-purpose computers are in use worldwide, helping people
in business, industry and government, and in their personal lives. The number could easily
double in the next few years. Over the years, many programmers learned the programming
methodology called structured programming.
You will learn structured programming and an exciting newer methodology, object-oriented
programming. Why do we teach both? Object orientation is the key programming methodology
used by programmers today. You will create and work with many software objects in this text.
But you will discover that their internal structure is often built using structured-programming
techniques. Also, the logic of manipulating objects is occasionally expressed with structured
programming.

Language of Choice for Networked Applications: Java has become the language of choice for

implementing Internet-based applications and software for devices that communicate over a network.

Stereos and other devices in homes are now being networked together by Java technology. At the

May 2006 JavaOne conference, Sun announced that there were one billion java-enabled mobile

phones and hand held devices! Java has evolved rapidly into the large-scale applications arena. It’s

the preferred-wide programming needs. Java has evolved so rapidly that this seventh edition of Java

How to Program was published just 10 years after the first edition was published. Java has grown so

large that it has two other editions. The Java Enterprise Edition (Java EE) is geared toward

developing large-scale, distributed networking applications and web-based applications. The Java

Micro Edition (Java ME) is geared toward developing applications for small, memory constrained

devices, such as cell phones, pagers and PDAs.

method

method

method

Data Abstraction

An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set ofte ns of
thousands of individual parts. They think of it as a well-defined object with its own unique
behavior. This abstraction allows people to use a car to drive to the grocery store without being
overwhelmed by the complexity of the parts that form the car. They can ignore the details of how
the engine, transmission, and braking systems work. Instead they are free to utilize the object as
a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more manageable
pieces. From the outside, the car is a single object. Once inside, you see that the car consists of
several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone, and so on.
In turn, each of these subsystems is made up of more specialized units. For instance, the sound
system consists of a radio, a CD player, and/or a tape player. The point is that you manage the
complexity of the car (or any other

complex system) through the use of hierarchical abstractions.

Encapsulation

An object encapsulates the methods and data that are contained inside it .the rest of the system
interacts with an object only through a well defined set of services that it provides.

Inheritance

I have more information about Flora –not necessarily because she is a florist but because
she is a shopkeeper.

One way to think about how I have organized my knowledge of Flora is in terms of a
hierarchy of categories:

Fig : A Class Hierarchy for Different kinds of Material objects

CLASSES AND OBJECTS

Concepts of classes and objects:
Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the
most rudimentary form of a class has been used. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax.

Thus, a class is a template for an object, and an object is an instance of a class. Because
an object is an instance of a class, you will often see the two words object and instance used
interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying

the data that it contains and the code that operates on that data.

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can (and usually do)
get much more complex. The general form of a class definition is shown here:

class classname {

type instance-
variable1; type
instance-variable2; // ...
type instance-variableN;
type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {
// body of method
}

}
The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class are
called members of the class. In most classes, the instance variables are acted upon and accessed

by the methods defined for that class. Thus, it is the methods that de can be used.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can use
this type to declare objects of that type. However, obtaining objects of a class is a two-step
process. First, you must declare a variable of the class type. This variable does not define an
object. Instead, it is simply a variable that can refer to an object. Second, you must acquire an
actual, physical copy of the object and assign it to that variable. You can do this using the new

operator. The new operator dynamically allocates (that is, allocates at run time) memory for an
object and returns a reference to it. This reference is, more or less, the address in memory of the
object allocated by new.

Ex: Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this
to show each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of the
class that is being instantiated. The class name followed by parentheses specifies the constructor
for the class. A constructor defines what occurs when an object of a class is created. Constructors
are an important part of all classes and have many significant attributes. Most real-world classes
explicitly define their own constructors within their class definition. However, if no explicit
constructor is specified, then Java will automatically supply a default constructor. This is the
case with Box.

HISTORY OF JAVA

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
Working version. This language was initially

Between the initial implementation of Oak in the fall of 1992 and the public Announcement of
Java in the spring of 1995, many more people contributed to the designand evolution of the
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lind Holm were key
contributors to the maturing of the original prototype.

The trouble With C and C++ (and most other languages) is that they are designed to be
compiled For a specific target. Although it is possible to compile a C++ program for just about
Any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The Problem is
that compilers are expensive and time-consuming to create. An easier—and more cost-
efficient—solution was needed. In an attempt to find such a solution,Gosling and others began
work on a portable, platform-independent language thatcould be used to produce code that would
run on a variety of CPUs under differing Environments. This effort ultimately led to the creation
of Java.

As mentioned earlier, Java derives much of its character from C and C++. This is by
intent. The Java designers knew that using the familiar syntax of C and echoing the object-
oriented features of C++ would make their language appealing to the legions of experienced
C/C++ programmers. In addition to the surface similarities, Java shares some of the other
attributes that helped make C and C++ successful. First, Java was designed, tested, and refined
by real, working programmers.

The Java Buzzwords:

No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability and
security, other factors also played an important role in molding the final form of the language.
The key considerations were summed up by the Java team in the Following list of buzzwords:

Simple

Secure

Portable

Object-oriented

Robust

Multithreaded

Architecture-neutral

Interpreted

High performance

Distributed

Dynamic

Simple

Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find Java hard
to master. If you already understand the basic concepts of object-oriented programming, learning
Java will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java
will require very little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers have little trouble learning Java..

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code
compatible with any other language. Borrowing liberally from many seminal object-software

environments of the last few decades, Java manages to strike a balance between the everything is an

object‖ paradigm and the programming.

Robust

The multi platformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the ability to
create robust programs was given a high priority in the design of Java.

To better understand how Java is robust, consider two of the main reasons for

program failure: memory management mistakes and mishandled exceptional conditions (that is,

run-time errors). Memory management can be a difficult, tedious ask in traditional programming
environments. For example, in C/C++, the pro grammer must manually allocate and free all
dynamic memory. This sometimes leads to problems, because programmers will either forget to
free memory that has been previously allocated or, worse, try to free some memory that another
part of their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you to
write programs that do many things simultaneously. The Java run-time system comes with an
elegant yet sophisticated solution for multiprocess .synchronization that enables you to construct
smoothly running interactive systems.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of

the main problems facing programmers is that no guarantee exists that if you write a program
today, it will run tomorrow—even on the same machine. Operating system up grades, processor
upgrades, and changes in core system resources can all combine to make a program malfunction.
The Java designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation forever.‖ To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling

into an intermediate representation called Java bytecode. This code can be interpreted on any
system that provides a Java Virtual Machine. Most previous attempts at cross platform solutions
have done so at the expense of performance. Other interpreted systems, such as BASIC, Tcl, and
PERL, suffer from almost insurmountable performance deficits. Java, however, was designed to
perform well on very low-power CPUs.

Distributed

Java is designed for the distributed environment of the Internet, because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different from accessing
a file. The original version of Java (Oak) included features for intra address-space messaging.
This allowed objects on two different computers to execute procedures remotely. Java revived
these interfaces in a package called Remote MethodInvocation (RMI). This feature brings an
unparalleled level of abstraction to client/server programming.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is
used to verify and resolve accesses to objects at run time. This makes it possible to dynamically
link code in a safe and expedient manner. This is crucial to the robustness of the applet
environment, in which small fragments of bytecode may be dynamically updated on a running
system.

DATA TYPES

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,double,
and boolean. These can be put in four groups:

Integers This group includes byte, short, int, and long, which are for whole valued signed numbers.

Floating-point numbers This group includes float and double, which represent numbers with
fractional precision.

Characters This group includes char, which represents symbols in a character set, like letters
and numbers.

Boolean This group includes boolean, which is a special type for representing true/false
values.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed,
positive and negative values. Java does not support unsigned, positive-only integers. Many other
Computer languages, including C/C++, support both signed and unsigned integers.

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128to

127. Variables of type byte are especially useful when you’re a network or file. They are also usefulnotbe

when directly compatible-intypeswith. Java’s other built

Syntax: byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the

least-used Java type, since it is defined as having its high byte first (called big-endian format).
This type is mostly applicable to 16-bit computers, which are becoming increasingly scarce.

Here are some examples of short variable
declarations: short s;

short t;
int

The most commonly used integer type is int. It is a signed 32-bit type that has a range
from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Any time you have an integer
expression involving bytes, shorts, ints, and literal numbers, the entire expression Is promoted
to int before the calculation is done.

long
long is a signed 64-bit type and is useful for those occasions where an int type is notlarge

enough to hold the desired value. The range of a long is quite large. This makesit useful when
big, whole numbers are needed. For example, here is a program thatcomputes the number of
miles that light will travel in a specified number of days.
Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions that
require fractional precision. For example, calculations such as square root, or transcendentals
such as sine and cosine, result in a value whose precision requires a floating-point type.

Their width and ranges are shown here:

Name Width Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float
float

32

The type float specifies a single-precision value that uses 32 bits of storage. Single
precision is faster on some processors and takes half as much space as double precision, but will
become imprecise when the values are either very large or very small. Variables of type float are

useful when you need a fractional component, but don’t require example, float can be useful when
representing dollars and cents.

Here are some example float variable
declarations: float hightemp, lowtemp;
double

Double precision, as denoted by the double keyword, uses 64 bits to store a value.
Double precision is actually faster than single precision on some modern processors that have
been optimized for high-speed mathematical calculations.

Here is a short program that uses double variables to compute the area of a circle:
// Compute the area of a circle.
class Area {

public static void main(String args[]) {
double pi, r, a;
r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area
System.out.println("Area of circle is " + a);

}

}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is an integertype that
is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to representcharacters..
There are no negative chars. The standard set of characters known asASCII still ranges from 0 to
127 as always, and the extended 8-bit character set, ISO-Latin-1,ranges from 0 to 255.

Booleans

Java has a simple type, called boolean, for logical values. It can have only one of
twopossible values, true or false. This is the type returned by all relational operators, suc has a <
b. boolean is also the type required by the conditional expressions that govern the control
statements such as if and for.

Here is a program that demonstrates the boolean type:
There are three interesting things to notice about this program. First, as

you can see,when a boolean value is output by println(), ―true‖ or ―false‖ Second,the value of a boolean

variable is sufficient, by itself, to control the if statement. Thereis

no need to write an if statement like this:
if(b == true) ...
Third, the outcome of a relational operator, such as <, is a boolean value. This is why

the expression 10 > 9 displays the value ―true.‖ Further, around 10 > 9 is necessary because the + operator
has a higher precedence than the >.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a
scope, which defines their visibility, and a lifetime. These elementsare examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of
a variable declaration is shown here:
type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the nam interface types are discussed later in Part I of this

book.) The identifier is the name of the variable.

Here are several examples of variable declarations of various types. Note that
some include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing

// d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in Chapter 2, a
block is begun with an opening curly brace and ended by a closing curlybrace. A block defines a
scope. Thus, each time you start a new block, you are creating a new scope. As you probably
know from your previous programming experience, a scope determines what objects are visible
to other parts of your program. It also determines the lifetime of those objects.

Most other computer languages define two general categories of scopes: global and local.

However, these traditional scopes do not fit scope defined by a method begins with its opening

curly brace.

To understand the effect of nested scopes, consider the following
program: // Demonstrate block scope.

Arrays

An array is a group of like-typed variables that are referred to by a common name.
Arrays of any type can be created and may have one or more dimensions. A specific elementin
an array is accessed by its index. Arrays offer a convenient means of grouping related
information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you
first must create an array variable of the desired type. The general form of a one dimensional
array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data
type of each element that comprises the array.

// Demonstrate a one-dimensional array.
class Array {

public static void main(String args[]) {
int month_days[];

month_days = new int[12];
month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;

month_days[5] = 30;
month_days[6] = 31;

month_days[7] = 31;

month_days[8] = 30;
month_days[9] = 31;

month_days[10] = 30;
month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you mightexpect,
look and act like regular multidimensional arrays. However, as you will see there are a couple of
subtle differences. To declare a multidimensional array variable,specify each additional index
using another set of square brackets. For example, the following declares a two-dimensional
array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an
array of arrays of int.

// Demonstrate a two-dimensional
array. class TwoDArray {

public static void main(String args[]) {
int twoD[][]= new int[4][5];

int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++)
{ twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<5; j++)

System.out.print(twoD[i][j] + "
"); System.out.println();

}

}
}

This program generates the following

output: 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

As stated earlier, since multidimensional arrays are actually arrays of arrays, the length of each
array is under your control. For example, the following program creates a two dimensional array
in which the sizes of the second dimension are unequal.

OPERATORS

Arithmetic operators are used in mathematical expressions in the same way that
they are used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

–– Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot

use them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.
The Bitwise Operators

Java defines several bitwise operators which can be applied to the integer types, long,
int, short, char, and byte. These operators act upon the individual bits of their operands.
They are summarized in the following table:

Operator Result

~ Bitwise unary NOT
& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Relational Operators

The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are
shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are
most frequently used in the expressions that control the if statement and the various
loop statements.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take

a formal look at it. The assignment operator is the single equal sign, =. The assignment operator
works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example,
consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the value of

z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a ―cha assignment‖ is an easy
way to set a group of

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types ofif-
then-else statements. This operator is the ?, and it works in Java much like it doesin C, C++, and
C#. It can seem somewhat confusing at first, but the ? can be used very effectively once
mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required to
return the samevoidtype,. which can’t be

CONTROL STATEMENTS
if

The if statement was introduced in Chapter 2. It is examined in detail here. The if statement is Java’s
conditionalprogrambranchexecution state through two different paths. Here is the general form of the if
statement:

if (condition) statement1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in

curly braces (that is, a block). The condition is any expression that returns a boolean value. The
else clause is optional.

int a,

b; // ...
if(a < b) a = 0;
else b = 0;

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)

statement;
else if(condition)

statement;

else if(condition)
statement;

...

else
statement;

switch

The switch statement is Java’s multiway branch dispatch execution to different parts of your code
based on the value of an expression. As such, it

often provides a better alternative than a large series of if-else-if statements.
Here is the general form of a switch statement:

switch (expression)
{ case value1:

// statement sequence

break;

case value2:

// statement sequence
break;

...

case valueN:

// statement sequence
break;

default:
// default statement sequence
}

The expression must be of type byte, short, int, or char; each of the values specified
in the case statements must be of a type compatible with the expression. Each case
value must be a unique literal (that is, it must be a constant, not a variable). Duplicate
case values are not allowed

Iteration Statements

Java’s iterationfor,while, andstatementsdo-while.Thesestatementsarecreate what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

While

The while loop is Java’sfundamentalloopingmoststatement. It repeats a statement or
block while its controlling expression is true. Here is its general form:

While (condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as
the conditional expression is true. When condition becomes false, control passes to the next line
of code immediately following the loop. The curly braces are unnecessary if only a single
statement is being repeated.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable to
execute the body of a while loop at least once, even if the conditional expression is false to begin
with.

Systex:
do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and
then evaluates the conditional expression. If this expression is true, the loop will
repeat. Otherwise, the loop terminates.

// Demonstrate the do-while loop.

class DoWhile {

public static void main(String args[]) {
int n = 10;
do {

System.out.println("tick " +
n); n--;
} while(n > 0);

}

}

For

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a
powerful and versatile construct. Here is the general form of the for statement:
for(initialization; condition; iteration) {

// body

}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the loop
is executed. Generally, this is an expression that sets the value of the loopcontrol variable, which
acts as a counter that controls the loop.. Next, condition is evaluated. This must be a Boolean
expression. It usually tests the loop control variable against a target value. If this expression is
true, then the body of the loop is executed. If it is false, the loop terminates. Next, the iteration
portion of the loop is executed. This is usually an expression that increments or decrements the
loop control variable.

// Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {
int n;

for(n=10; n>0; n--)
System.out.println("tick " + n);

}

}

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a
statement sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be
used as a ―civilized‖ form of goto. The last

Return

The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the method. As
such, it is categorized as a jump statement. Although a full discussion of return must wait until
methods are discussed in Chapter 7, a brief look at return is presented here.

As you can see, the final println() statement is not executed. As soon as return

is executed, control passes back to the caller.

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common to
assign a value of one type to a variable of another type. If the two types are compatible, then
Java will perform the conversion automatically. For example, it is always possible to assign an
int value to a long variable. However, not all types are compatible, and thus, not all type
conversions are implicitly allowed.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type

conversion will take place if the following two conditions are met:

■ The two types are compatible.
■ The destination type is larger than the sou

When these two conditions are met, a widening conversion takes place. For example, the

int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For

example, the following fragment casts an int to a byte. If the integer’s valu than the range of a byte, it will be
reduced modulo (the remainder of an integer
division by the) byte’s range.

int a;
byte b;
// ...
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer
type: truncation. As you know, integers do not have fractional components.Thus, when a
floating-point value is assigned to an integer type, the fractional component is lost. For example,
if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 will have
been truncated. Of course, if the size of the whole number component is too large to fit into the
target integer type, then that value will be

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static void main(String args[]) {
byte b;
int i = 257;

double d = 323.142;
System.out.println("\nConversion of int to
byte."); b = (byte) i;

System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to
int."); i = (int) d;

System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to
byte."); b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}
This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323
Conversion of double to byte.
d and b 323.142 67

SIMPLE JAVA PROGRAM

/*

This is a simple Java program.
Call this file "Example.java".
*/
class Example {

// Your program begins with a call to main().
public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}
}

Access Control

As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control.

How a member can be accessed is determined by the access specifier that modifies its

declaration. Java supplies a rich set of access specifiers. Some aspects of access control are
related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)
These parts of Java’s access control mechanism examining access control as it applies to a
single class. Once you understand the fundamentals of access control, the rest willpublic,
privatebe, andeasyprotected. . Java’s

Java also defines a

default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s beginpublicbyand privatedefining.Whenamember of a class is modified by the

public specifier, then that member can be accessed by any other code. When a member of a class
is specified as private, then that member can only be accessed byother members of its class.
Now you can understand why main() has always been preceded by the public specifier. It is
called by code that is outside the program—that is, by the Java run-time system. When no access
specifier is used, then by default the member of a class is public within its own package, but
cannot be accessed outside of its package.

this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object. That
is, this is always a reference to the object on which the method was invoked. You can use this

anywhere a reference to an object of the cur what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d)
{ this.width = w;

this.height = h;
this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant, but
perfectly correct. Inside Box(), this will always refer to the invoking object. While

it is redundant in this case, this is useful in other contexts, one of which is explained in
the next section.

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside

the same or enclosing scopes. Interestingly, you can have local variables,

including formal parameters to methods, which instance variables. However, when a local variable has the same
name as an instance
variable, the local variable hides the instance variable.

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
this.width = width;

this.height = height;
this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing,
and some programmers are careful not to use local variables and formal
parameter names that hide instance variables.

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later

reallocation. In some languages, such as C++, dynamically allocated objects must
be manually released by use of a delete operator. Java takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is

Called garbage collection. It works like this: when no references to an object exist, that object is
assumed to be no longer needed, and the memory occupied by the object can be reclaimed.
Furthermore, different Java run-time implementations will take varying approaches to garbage
collection, but for the most part, you should not have to think about it while writing your
programs.

Overloading methods and constructors

Overloading Methods

In Java it is possible to define two or more methods within the same class that share the

same name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as

method overloading. Method overloading is one of the ways that Java implements
polymorphism.

// Demonstrate method
overloading. class OverloadDemo {
void test() {

System.out.println("No parameters");

}

// Overload test for one integer
parameter. void test(int a) {
System.out.println("a: " + a);

}

// Overload test for two integer parameters.
void test(int a, int b) { System.out.println("a
and b: " + a + " " + b);

}

// overload test for a double
parameter double test(double a) {
System.out.println("double a: " + a);
return a*a;

}

}

class Overload {

public static void main(String args[]) {
OverloadDemo ob = new
OverloadDemo(); double result;

// call all versions of test()
ob.test();

ob.test(10);
ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);
}

}

This program generates the following
output: No parameters

a: 10

a and b: 10 20
double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times.

Overloading Constructor

In addition to overloading normal methods, you can also overload constructor
methods. In fact, for most real-world classes that you create, overloaded constructors

will be the norm, not the exception. To Boxunderstandclass why developed in the preceding chapter. Following
is the latest version of Box:
class Box {
double width;

double height;
double depth;

// This is the constructor for Box.
Box(double w, double h, double d)
{ width = w;

height = h;

depth = d;

}

// compute and return volume
double volume() {

return width * height * depth;

}
}

Argument/Parameter passing

In general, there are two ways that a computer language can pass an argument to a
subroutine. The first way is call-by-value. This method copies the value of an argument into the
formal parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this method, a reference to an argument (not the value of the argument) is passed to the
parameter. Inside the subroutine, this reference is used to access the actual argument specified in
the call. This means that changes made to the parameter will affect the argument used to call the
subroutine. As you will see, Java uses both approaches, depending upon what is passed.
For example, consider the following
program: // Simple types are passed by value.
class Test {

void meth(int i, int j)
{ i *= 2;
j /= 2;

}

}
class CallByValue {
public static void main(String args[]) {
Test ob = new Test();
int a = 15, b = 20;

System.out.println("a and b before call: "
+ a + " " + b);
ob.meth(a, b);

System.out.println("a and b after call: " +
a + " " + b);
}

}
The output from this program is shown here: a and b before call: 15 20
a and b after call: 15 20

Recursion

Java supports recursion. Recursion is the process of defining something in terms of itself.
As it relates to Java programming, recursion is the attribute that allows a method to call itself. A
method that calls itself is said to be recursive.The classic example of recursion is the
computation of the factorial of a number. The factorial of a number N is the product of all the
whole numbers between 1 and N.

// A simple example of
recursion(factorial). class Factorial {
// this is a recursive function

int fact(int n) {
int result;
if(n==1) return 1;

result = fact(n-1) * n;
return result;

}

}

class Recursion {

public static void main(String args[]) {
Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}

}
The output from this program is shown here:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

String class

Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the example
programs shown toward the end of Part I. String is probably the most commonly used class in

Java’s class library. The obviousareaveryimportantreasonpartof for programming.

The first thing to understand about strings is that every string you create is actually an object of
type String. Even string constants are actually String objects. For example, in the statement

System.out.println("This is a String, too");

the string ―ThisStringisconstant. Fortunately,String,Javahandlestoo‖String isconstants

in the same way that other computer language worry about this.

The second thing to understand about strings is that objects of type String are immutable; once a
String object is created, its contents cannot be altered. While this may seem like a serious
restriction, it is not, for two reasons:

■ If you need to change a string, youthe can modifications.
■ Java definesString ,calledpeerStringBufferclass,whichallowsofstrings to be altered, so
all of the normal string manipulations are still available in Java.

(StringBuffer is described in Part II of this book.)

Strings can be constructed a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed. For

example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.

For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing ―I like Java.‖

The following program demonstrates the preceding concepts:

// Demonstrating Strings.

class StringDemo {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1 + " and " + strOb2;

System.out.println(strOb1);

System.out.println(strOb2);

System.out.println(strOb3);

}

}

The output produced by this program is shown here:

First String

Second String

First String and Second String

The String class contains several methods that you can use. Here are a few. You can

test two strings for equality by using equals(). You can obtain the length of a string by

calling the length() method. You can obtain the character at a specified index within a

string by calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)

int length()

char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.

class StringDemo2 {

public static void main(String args[]) {
String strOb1 = "First String";

String strOb2 = "Second
String"; String strOb3 = strOb1;

System.out.println("Length of strOb1: "
+ strOb1.length());

System.out.println("Char at index 3 in strOb1: "
+ strOb1.charAt(3));

if(strOb1.equals(strOb2))
System.out.println("strOb1 == strOb2");
else

System.out.println("strOb1 != strOb2");
if(strOb1.equals(strOb3))
System.out.println("strOb1 == strOb3");
else

System.out.println("strOb1 != strOb3");

}
}

This program generates the following output:
Length of strOb1: 12

Char at index 3 in strOb1: s
strOb1 != strOb2
strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any
other type of object. For example:

// Demonstrate String
arrays. class StringDemo3 {

public static void main(String args[]) {
String str[] = { "one", "two", "three" };
for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: "
+ str[i]);
}

}

Here is the output from this
program: str[0]: one

str[1]: two
str[2]: three

As you will see in the following section, string arrays play an important part
in many Java programs.

UNIT-II

Inheritance – Inheritance types- super keyword- preventing inheritance: final classes and
methods
Polymorphism – method overloading and method overriding, abstract classes and methods.

Interface – Interfaces VS Abstract classes- defining an interface- implement interfaces-
accessing implementations through interface references- extending interface -inner classes.

Packages – Defining- creating and accessing a package- importing packages.

Types of Inheretence:

Single Inheretence

Hierarichal Inherintence

Multiple Inherintence

Multilevel Inherintence

Hybrid Inherintence

Single Inherintence:

Derivation a subclass from only one super class is called Single Inherintence.

Hierarchical Inherintence:

Derivation of several classes from a single super class is called Hierarchical Inherintence:

Multilevel Inheritance:

Derivation of a classes from another derived classes called Multilevel Inheritance.

Multiple Inheritance:

Derivation of one class from two or more super classes is called Multiple Inheritance

But java does not support Multiple Inheritance directly. It can be implemented by using interface
concept.

Hybrid Inheritance:

Derivation of a class involving more than one from on Inheritance is called Hydrid Inheritance

Defining a Subclass:

A subclass is defined as

Systax: class subclass-name extends superclass-name

{

Variable declaration;

Method declaration;

}

The keyword extends signifies that the properties of the super class name are extended to the
subclass name. The subclass will now contain its own variables and methods as well as those of
the super class. But it is not vice-versa.

Member access rules

o Even though a subclass includes all of the members of its super class, it cannot access
those members who are declared as Private in super class.

o We can assign a reference of super class to the object of sub class. In that situation we
can access only super class members but not sub class members. This concept is called
as

―Super class Reference, Sub class Objec

/* In a class hierarchy, private members remain private to their class.
This program contains an error and will not
compile.

*/

// Create a superclass.
class A {

int i; // public by default
private int j; // private to A
void setij(int x, int y) {

i = x;
j = y;

}

}

// A's j is not accessible
here. class B extends A {

int total;
void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {
B subOb = new B();

subOb.setij(10, 12);
subOb.sum();

System.out.println("Total is " + subOb.total);

}
}

Super class variables can refer sub-class object

o To a reference variable of a super class can be assigned a reference to any subclass
derived from that super class.

o When a reference to a subclass object is assigned to a super class reference
variable, we will have to access only to those parts of the object defined by the
super class

o It is bcz the super class has no knowledge about what a sub class adds to it.

Program

class RefDemo

{

public static void main(String args[])

{

BoxWeight weightbox = new BoxWeight(3, 5, 7,
8.37); Box plainbox = new Box();

double vol;

vol = weightbox.volume();
System.out.println("Volume of weightbox is " +
vol); System.out.println("Weight of weightbox is " +
weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box
reference plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight);

}
}

Using super keyword

o When ever a sub class needs to refer to its immediate super class, it can do so by use
of the key word super.

o Super has two general forms:
o Calling super class constructor
o Used to access a member of the super class that has been hidden by a member

of a sub class

Using super to call super class constructor

o A sub class can call a constructor defined by its super class by use of the following form
of super:

o super (parameter-list);
o Parameter list specifies parameters needed by the constructor in the super class.

Note: Super () must always by the first statement executed inside a sub-class
constuctor.

// A complete implementation of BoxWeight.
class Box {

private double width;
private double height;
private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;

height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to
indicate height = -1; // an
uninitialized depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume

double volume() {

return width * height * depth;
}

}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to
constructor super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor

weight = m;

}
// default constructor

BoxWeight()
{ super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);

weight = m;

}
}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15,

34.3); BoxWeight mybox2 = new BoxWeight(2, 3, 4,
0.076); BoxWeight mybox3 = new BoxWeight(); //

default BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " +
mybox1.weight); System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " +
mybox2.weight); System.out.println();

vol = mybox3.volume();
System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " +
mybox3.weight); System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " +
myclone.weight); System.out.println();

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " +
mycube.weight); System.out.println();

}
}

Output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

Calling members of super class using super

o The second form of super acts somewhat like this keyword, except that it always refers
to the super class of the sub class in which it is used.

o The syntax is:
o Super.member ;

o Member can either be method or an instance variable

Program

// Using super to overcome name
hiding. class A {
int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A
B(int a, int b) {

super.i = a; // i in A
i = b; // i in B

}
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}
class UseSuper {

public static void main(String args[]) {
B subOb = new B(1, 2);
subOb.show();

}

}

Output:

i in superclass: 1
i in subclass: 2

When the constructor called:

Always the super class constructor will be executed first and sub class constructor will be
executed last.

// Demonstrate when constructors are called.

// Create a super class.

class A {
A() {
System.out.println("Inside A's constructor.");

}
}

// Create a subclass by extending class A.
class B extends A {

B() {
System.out.println("Inside B's constructor.");
}

}

// Create another subclass by extending
B. class C extends B {
C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {
C c = new C();
}

}

Output:

Inside A’s constructor

Inside B’s constructor
Inside C’s constructor

Using Final keyword:

We can use final key word in three ways:

o Used to create equivalent of a named constant

Final datatype identifier = ; o Used to prevent inheritance

Final class …………..

o Used to avoid overloading
Final return type ………….

Using final to Prevent Overriding:

While method overridingul features,is thereonewill ofbetimesJava’swhenyou most will want to prevent it from
occurring. To disallow a method from being overridden, specify

final as a modifier at the start of its declaration. Methods declared as final cannot be overridden.
The following fragment illustrates final:

class A {

final void meth() {
System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't
override. System.out.println("Illegal!");

}

}

Using final to Prevent Inheritance:

Sometimes you will want to prevent a class from being inherited. To do this, precede the class
declaration with final. Declaring a class as final implicitly declares all of its methods as final,
too. As you might expect, it is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.

Here is an example of a final class:
final class A {
// ...

}
// The following class is illegal.

class B extends A { // ERROR! Can't subclass
A // ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Polymorphism Method overriding:

In a class hierarchy, when a method in a sub class has the same name and type signature

as a method in its super class, then the method in the sub class is said to be override the
method in the sub class.

When an overridden method is called from within a sub class, it will always refers to the
version of that method defined by the sub class.

The version of the method defined in the super class is hidden.

In this situation, first it checks the method is existed in super class are not. If it is existed
then it executes the version of sub class otherwise it gives no such method found
exception.

Note: Methods with different signatures overloading but not overriding.

// Method
overriding. class A {
int i, j;

A(int a, int b)
{ i = a;
j = b;

}

// display i and
j void show() {

System.out.println("i and j: " + i + " " + j);

}
}

class B extends A
{ int k;

B(int a, int b, int c)
{ super(a, b);
k = c;

}

// display k –this overrides show() in A
void show() {

System.out.println("k: " + k);
}

}

class Override {

public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}}

Output:
k: 3

Dynamic method dispatch

o It is a mechanism by which a call to an overridden method is resolved at run time rather
then compile time.

o It is important because this is how java implements runtime polymorphism.
o Before going to that we must know about super class reference sub class object.

// Dynamic Method Dispatch
class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {
// override callme()
void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {
A a = new A(); // object of type A

B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A
r = a; // r refers to an A object

r.callme(); // calls A's version of callme
r = b; // r refers to a B object

r.callme(); // calls B's version of callme
r = c; // r refers to a C object r.callme();
// calls C's version of callme

}
}

Output:

Inside A’s callme method

Inside B’s callme method

Inside C’s callme method

Abstract class:

o An abstract method is a method that is declared with only its signatures with out
implementations.

o An abstract class is class that has at least one abstract method.

The syntax is:

Abstract class class-name

{

Variables Abstract
methods; Concrete
methods;

.

.

.}

o We can’t declare any abstract constructor. o Abstract class should not include any abstract static method.
o Abstract class can’t be directly instantiated with
o Any sub class of abstract class must be either implements all the abstract methods in the

super class or declared it self as abstract.

o Abstract modifiersubclassresponsibilitiesreferred .sebecauofasnoimplementation―
of methods. Thus, a sub class must overridden them.

// A Simple demonstration of
abstract. abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");

}
}

class B extends A
{ void callme() {
System.out.println("B's implementation of callme.");
}
}

class AbstractDemo {

public static void main(String args[]) {
B b = new B();

al
lme();

b.
callme
too();

}
}

// Using abstract methods and classes.

abstract class Figure {
double dim1;.

double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;

}

// area is now an abstract method
abstract double area();

}

class Rectangle extends Figure
{ Rectangle(double a, double b)

{ super(a, b);

}

// override area for
rectangle double area() {

System.out.println("Inside Area for
Rectangle."); return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for
Triangle."); return dim1 * dim2 / 2;

}

}

class AbstractAreas

{

public static void main(String args[])

{

// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is

created figref = r;

System.out.println("Area is " +
figref.area()); figref = t;
System.out.println("Area is " + figref.area());

}
}

Packages and Interfaces : Defining, Creating and Accessing a Package, Understanding
CLASSPATH, importing packages, differences between classes and interfaces, defining an
interface, implementing interface, applying interfaces, variables in interface and extending
interfaces.

.Defining Package:

o Generally, any java source file contains any (or all) of the following internal parts: o
A single package statement (optional)

o
o Any number of import statements (optional)
o A single public class declaration (required)
o Any number of classes private to the package (optional)

o Packages and Interfaces are two of the basic components of a java program.
o Packages are collection of related classes.
o Packages are containers for classes that are used to keep the class name compartmentalized.

o Packages are stored in an hierarchical manner and are explicitly imported into new class
defination.

o Java packages are classified into two types:

o Java API package or pre-defined packages or built –in –packages . o
User –defined packages
o Java 2 API contains 60 java.* packages.
o For Example:

java.lang

Java.io

Java.awt

Java.util

Java.net

Javax.swing

To create a package

Just give package <<packagename>> as a first statement in java
program.

Any classes declared within that file will belong to the specified
package.

If we omit package statement, the classes are stored in the default
package.
Syntex:

Package packagename

Syntax: Package packagename.subpackage

Access protection:

Classes and packages both means of encapsulating and containing the name space and
scope of variables and methods.

Packages acts as a containers for classes and other sub –ordinate packages.

Classes act as containers for data and code.

Java address four categories of visibility for class
members: o Sub –classes in the same package.

o Non –sub class in the same package.
o Sub –classes in the different package.
o Classes that are neither in the same package nor subclasses.

The 3 access specifiers private, public and protected provide a variety of ways to produce
the many levels of access required by these categories.

Access specifier

Access Location

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package sub class No Yes Yes Yes

Same package non –sub class No

Different package

Different package

sub class

sub class No

No

Yes

No

No

Yes

Yes

No

Yes

Yes

Yes

From the above table,
o Any thing declared public can be accessed from any where
o Any thing accessed private cannot be accessed from outside of its class
o In the default, it is visible to sub-class as well as to other classes in the same package
o Any thing declared as protected, this is allow an element to be seen outside your

current package, but also allow to sub class in other packages access.

Importing Packages:

There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified with
their package name or names, it could become tedious to type in the long dot-separated package
path name for every class you want to use. For this reason, Java includes the import statement to
bring certain classes, or entire packages, into visibility. Once imported, a class can be referred to
directly, using only its name. The import statement is a convenience to the programmer and is
not technically needed to write a complete Java program. If you are going to refer to a few dozen
classes in your application, however, the import statement will save a lot of typing.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. This is the general form of the

import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the depth of
a package hierarchy, except that imposed by the file system. Finally,

you specify either an explicit classname or a star (*), which indicates that the Java
compiler should import the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

Difference between classes and interfaces:

A class is a template for an
abject. (or)

A class is a way of binding variables and methods in a single unit. With the class it is possible to
create object for that object. With the one class we can extend an another class.

A interface is collection of undefined method. Means all the methods are not contain any body.
We have to provide the body for that interface. with the interface it is not possible to create
object. For the declared interface we have to implement that interface.

Defining Interfaces:

Interface is a collection of method declarations and constants that one or more classes of

non

objects will use.

We can implement multiple inheritance using interface.

Because interface consists only signatures followed by semi colon and parameter list they
are implicitly abstract.

Variables can be declared and initialized inside interface they are implicitly final and
static.
An interface method can’t be final or stat

An interface can be extended from another interface.

Declaration of interface:

Access interface name

{

Return type member-name1(parametelist);
Return type member-name2(parametelist);

.

.

.

Type finalvariablename=initialization;

}

o There will be no default implementation for methods specified in an interface.
o Each class that include interface must implements all methods.
o All the methods and variables are implicitly public if interface itself is declared as public.

Implementing Interfaces:

Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create the
methods defined by the interface. The general form of a class that

includes the implements clause looks like this:

access class classname [extends superclass]
[implements interface [,interface...]] {

// class-body

}

Here, access is either public or not used. If a class implements more than one interface,
the interfaces are separated with a comma. If a class implements two interfaces that declare the
same method, then the same method will be used by clients of either

interface. The methods that implement an interface must be declared public. Also, the
type signature of the implementing method must match exactly the type signature
specified in the interface definition.

Applying Interfaces:

To understand the power of interfaces, let chapters you developed a class called Stack that implemented
a simple fixed-size stack.

However, there are many ways to implement a stack. For example, the stack can be of a fixed

size or it can be ―growable.‖ The stack can and so on. No matter how the stack is implemented, the
interface to the

stack remains the same. That is, the methods push() and pop() define the interface to the
stack independently of the details of the implementation. Because the interface to a stack is
separate from its implementation, it is easy to define a stack interface, leaving it

to each implementation to define the specific

First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack
interface. interface IntStack {

void push(int item); // store an item
int pop(); // retrieve an item
}

Variables in Interfaces:

When you include that interface in a class interface), all of those variable names will be in scope as
constants. This is similar to

using a header file in C/C++ to create a large number of #defined constants or const

declarations. If an interface contains no methods, then any class that includes such an
interface doesn’tplementanythingactually.Itisasifthatclass wereimimporting the
constant variables into the class name space as final variables.

import java.util.Random;
interface SharedConstants
{ int NO = 0;

int YES = 1;

int MAYBE = 2;
int LATER = 3;
int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants
{ Random rand = new Random();
int ask() {

int prob = (int) (100 * rand.nextDouble());
if (prob < 30)

return NO; // 30%
else if (prob < 60)
return YES; // 30%
else if (prob < 75)
return LATER; //
15% else if (prob <
98) return SOON; //
13% else

return NEVER; // 2%

} }

class AskMe implements SharedConstants
{ static void answer(int result) {
switch(result) {

case NO:
System.out.println("No");
break;

case YES:

System.out.println(―yes‖); break;
case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:
System.out.println("Soon");

break;

case NEVER:
System.out.println("Never");
break;

}}

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());

answer(q.ask());

answer(q.ask());
answer(q.ask());

}}

Interfaces Can Be Extended:

One interface can inherit another by use of the keyword extends. The syntax is the same
as for inheriting classes. When a class implements an interface that inherits

another interface, it must provide implementations for all methods defined within
the interface inheritance chain. Following is an example:

// One interface can extend
another. interface A {

void meth1();
void meth2();

}

// B now includes meth1() and meth2() -- it adds
meth3(). interface B extends A {

void meth3();

}
// This class must implement all of A and B

class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");

}

public void meth2() {
System.out.println("Implement meth2().");
}

public void meth3() {
System.out.println("Implement meth3().");
}
}

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment you might want to try removing the implementation for meth1()
in MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods defined by that interface,
including any that are inherited from other interfaces.

Unit-III

Exception Handling –Dealing with errors- benefits of exception handling- the classification of
exceptions –exception hierarchy- checked exceptions and unchecked exceptions- usage of try-
catch-throw-throws and finally-rethrowing exceptions- exception specification- built in
exceptions- creating own exception sub classes.

Multithreading –Differences between multiple processes and multiple threads- thread states-
creating threads- interrupting threads- thread priorities- synchronizing threads- inter –thread
communication- producer consumer pattern

Introduction

o An exception is an event that occurs during the execution of a program that disrupts the
normal flow of instruction.

Or

o An abnormal condition that disrupts Normal program flow.
o There are many cases where abnormal conditions happen during program execution,

such as
o Trying to access an out - of –bounds array elements.
o The file you try to open may not exist.
o The file we want to load may be missing or in the wrong format.
o The other end of your network connection may be non –existence.

o If these cases are not prevented or at least handled properly, either the program will be
aborted abruptly, or the incorrect results or status will be produced.

o When an error occurs with in the java method, the method creates an exception object
and hands it off to the runtime system.

o The exception object contains information about the exception including its type and
the state of the program when the error occurred. The runtime system is then
responsible for finding some code to handle the error.

o In java creating an exception object and handling it to the runtime system is called
throwing an exception.

o Exception is an object that is describes an exceptional (i.e. error) condition that has
occurred in a piece of code at run time.

o When a exceptional condition arises, an object representing that exception is created
and thrown in the method that caused the error. That method may choose to handle
the exception itself, or pass it on. Either way, at some point, the exception is caught and
processed.

o Exceptions can be generated by the Java run-time system, or they can be
manually generated by your code.

o System generated exceptions are automatically thrown by the Java runtime system

General form of Exception Handling
block try {

// block of code to monitor for errors

}

bject

Exceptional Handler

Optional part

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1
}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed before try block ends

}

Try Block

No

Exception Throws exception o

arise or

No
Catch Block

appropriate

Catch

block

Finally Block

 By using exception to managing errors, Java programs have have the
following advantage over traditional error management techniques:

– Separating Error handling code from regular code.
– Propagating error up the call stack.
– Grouping error types and error differentiation.

For Example:

class Exc0 {

public static void main(String args[]) {
int d = 0;
int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception. This causes the execution of Exc0 to stop,
because once an exception has been thrown, it must be caught by an exception handler and dealt

with immediately. In this example, we haven’t supp the exception is caught by the default handler provided by
the Java run-time system. Any

exception that is not caught by your program will ultimately be processed by the default handler.
The default handler displays a string describing the exception, prints a stack trace from the point
at which the exception occurred, and terminates the program. Here is the output generated when
this example is executed.

java.lang.ArithmeticException: / by
zero at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4

Try and Catch Blocks

If we don’t want to prevent the programapthe to trap the exception using the try block. So we can place
the statements that may causes an

exception in the try block.

Try
{

}

If an exception occurs with in the try block, the appropriate exception handler that is
associated with the try block handles the exception immediately following the try block,
include a catch clause specifies the exception type we wish to catch. A try block must
have at least one catch block or finally that allows it immediately.

Catch block

The catch block is used to process the exception raised. A try block can be one or more
catch blocks can handle a try block.
Catch handles are placed immediately after the try block.

Catch(exceptiontype e)

{
//Error handle routine is placed here for handling exception

}

Program 1

Class trycatch

{

Public static void main(String args[])

{

Int[] no={1,2,3};
Try
{

System.out.println(no[3]);

}

Catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(―Out of bonds‖);

}

System.out.println(―Quit‖);

}

}

Output

Out of the Range

Quit

Program 2 Class
ArithExce

{

Public static void main(String args[])
{

Int a=10;
Int b=0;
Try

{

a=a/b;

System.out.println(―Won’t Print‖);

}

Catch(ArithmeticException e)

{

System.out.println(―Division by Zero error‖); System.out.println(―Change the b value‖);

}

System.out.println(―Quit‖);

}

}

Output

Division By zero error

Please change the B value

Quit

Note:

A try ad its catch statement form a unit.

We cannot use try block alone.

The compiler does not allow any statement between try block and its associated catch
block

Displaying description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception.

 We can display this description in a println statement by simply passing the exception as
an argument.

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

}

 When this version is substituted in the program, and the program is run, each divide-by-

zero error displays the following message:

– Exception: java.lang.ArithmeticException: / by zero

Multiple Catch Blocks

In some cases, more than one exception could be raised by a single piece of code. To handle this
type of situation, you can specify two or more catch clauses, each catching a different type of
exception. When an exception is thrown, each catch statement is inspected in order, and the first
one whose type matches that of the exception is executed. After one catch statement executes,
the others are bypassed, and execution continues after the try/catch block. The following
example traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {

public static void main(String args[]) {
try {

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;

int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e)
{ System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");
}

}

This program will cause a division-by-zero exception if it is started with no commandline
parameters, since a will equal zero. It will survive the division if you provide a command-line
argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program
attempts to assign a value to c[42].

Here is the output generated by running it both
ways: C:\>java MultiCatch
a = 0

Divide by 0: java.lang.ArithmeticException: / by
zero After try/catch blocks.

C:\>java MultiCatch
TestArg a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.

Throw Keyword

So far, we have only been catching exceptions that are thrown by the Java Run –Time
systems. How ever, it is possible for our program to throw an exception explicitly, using
the throw statement.

 Throw throwableInstance

Here, ThrowableInstance must be an object of type Throwable or a subclass of
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such
as String and Object, cannot be used as exceptions

 There are two ways you can obtain a Throwable object:

– using a parameter into a catch clause
– creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of the exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected,
and so on. If no matching catch is found, then the default exception handler halts the
program and prints the stack trace

// Demonstrate throw.
class ThrowDemo {
static void demoproc()
{ try {
throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.println("Caught inside
demoproc."); throw e; // rethrow the exception

}

}

public static void main(String args[]) {
try {

demoproc();

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}

}}

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up
another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then rethrown.
Here is the resulting output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of J close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. All of- Java’ in run-time
exceptions have at least two constructors: one with no parameter and one that

takes a string parameter. When the second form is used, the argument specifies a string
that describes the exception. This string is displayed when the object

is used as an argument to print() or println(). It can also be obtained by a call to
getMessage(), which is defined by Throwable.

Throws Keyword

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You

do this by including a throws clause in the method’sthrowsclauselistsdeclar the types of exceptions that
a method might throw. This is necessary for all exceptions,

except those of type Error or RuntimeException, or any of their subclasses. All other
exceptions that a method can throw must be declared in the throws clause. If they are
not, a compile-time error will result. This is the general form of a method declaration that
includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw

Program

class ThrowsDemo {

static void throwOne() throws IllegalAccessException
{ System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}

public static void main(String args[]) {
try {

throwOne();

} catch (IllegalAccessException e)
{ System.out.println("Caught " + e);
}

}

}
 Here is the output generated by running this example program:

 inside throwOne
 caught java.lang.IllegalAccessException

S.No. throw throws

Java throw keyword is used to explicitly Java throws keyword is used to declare an
throw an exception. exception.

Checked exception cannot be propagated Checked exception can be propagated with using throw only.
throws.

3)
Throw is followed by an instance.

4)
Throw is used within the method.

5)
You cannot throw multiple
exceptions.

Finally block

Throws is followed by class.

Throws is used with the method signature.

You can declare multiple exceptions e.g.
public void method()throws
IOException,SQLException.

 When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear

path that alters the normal flow through the method. Depending upon how the method is
coded, it is even possible for an exception to cause the method to return prematurely.
This could be a problem in some methods. For example, if a method

opens a file upon entry and closes it upon exit, then you will not want the code that closes
the file to be bypassed by the exception-handling mechanism. The finally keyword is
designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally

block will execute even if no catch statement matches the exception. Any time a method
is about to return to the caller from inside a try/catch block, via an uncaught exception or
an explicit return statement, the finally clause is also executed just before the method
returns. This can be useful for closing file handles and freeing up any other resources that

1)

2)

might have been allocated at the beginning of a method with the intent of disposing of
them before returning. The finally clause is optional. However, each try statement
requires at least one catch or a finally clause.

// Demonstrate finally.
class FinallyDemo {

// Through an exception out of the method.
static void procA() {

try {

System.out.println("inside procA");
throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}
}

// Return from within a try
block. static void procB() {
try {

System.out.println("inside procB");
return;

} finally { System.out.println("procB's
finally");

}

}

// Execute a try block normally.
static void procC() {

try {

System.out.println("inside procC"); }
finally { System.out.println("procC's
finally");

}

}

public static void main(String args[]) {
try {
procA();

} catch (Exception e) {
System.out.println("Exception caught");

}

procB();
procC();

}

}

 In this example, procA() prematurely breaks out of the try by throwing an exception. The
finally clause is executed on the way out. procB()’stry statement is exited via a return

statement. The finally clause is executed before procB() returns. In procC(), the

try statement executes normally, without error. However, the finally block is still
executed. If a finally block is associated with a try, the finally block will be executed
upon conclusion of the try.

 Here is the output generated by the preceding

program: inside procA

procA’s finally

Exception caught
inside procB

procB’s finally inside procC

procC’sly final

Difference between final, finally and finalize

There are many differences between final, finally and finalize. A list of differences between
final, finally and finalize are given below:

No. final finally finalize

Final is used to apply restrictions on Finally is used to place Finalize is used to

class, method and variable. Final class important code, it will be perform clean up

1) can't be inherited, final method can't be executed whether processing just before

overridden and final variable value can't exception is handled or object is garbage

be changed. not. collected.

2) Final is a keyword. Finally is a block. Finalize is a method.

Java final example

1. class FinalExample{
2. public static void main(String[] args){
3. final int x=100;
4. x=200;//Compile Time Error
5. }}

Java finally example

1. class FinallyExample{
2. public static void main(String[] args){
3. try{
4. int x=300;

5. }catch(Exception e){System.out.println(e);}

6. finally{System.out.println("finally block is executed");}
7. }}

Java finalize example

1. class FinalizeExample{
2. public void finalize(){System.out.println("finalize

called");}
3. public static void main(String[] args){
4. FinalizeExample f1=new FinalizeExample();
5. FinalizeExample f2=new FinalizeExample();
6. f1=null;
7. f2=null;
8. System.gc();
9. }}

Hierarchy of Java Exception classes

Java Built –In Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few have been
used by the preceding examples. The most general of these exceptions are subclasses of the
standard type RuntimeException. Since java.lang is implicitly imported into all Java programs,
most exceptions derived from RuntimeException are automatically available. Furthermore, they
need not be includedthrowslist. inInthe languageany ofmethod’sJava,thesearecalled unchecked
exceptions because the compiler does not check to see if a method handles or throws these
exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table

lists those exceptions defined by java.lang that must be includedthrowslist in if that
method can generate one of these exceptions and does not handle it itself. These are called

checked exceptions. Java defines several other types of exceptions that relate to its various class
libraries

List of Unchecked exceptions

List of Checked exceptions

User defined exceptions

 We can create our own exception by extending exception class.
 The throw and throws keywords are used while implementing user defined exceptions

Class ownExcepion extends Exception

{

ownException(String msg)

{

Super(msg);

}

}

Class test

{

Public static void main(String args[])
Int mark=101;

Try

{

if(mark>100)

{

Throw new ownException(―Marks>100‖);

}

}

Catch(ownException e)

{

System.out.println (―Exception caughtr‖); System.out.println.(―e.getMessage());

}

Finally

{

System.out.println(―End of prg‖);

}
}

}

Output:

Exception caught

Marks is > 100

End of program

Multi Threaded Programming

Introduction:

o Java provides a built –in support for multithreaded programming.
o A multithreaded program contains two o more parts that can run concurrently.
o Each part of such a program called thread.
o Each thread defines a separate path of execution.
o Thus multi thread is a specialized form of multi tasking.
o Multi tasking is supported by OS
o There are two distinct types of multi tasking
o Process based multi tasking
o Process is a program that is executing.
o In process based multi tasking, a program is the smallest unit of code that can be

dispatched by the scheduler

o Process based multi tasking is a feature that allows computer to run two or more
programs concurrently

o For example :
o This tasking enables us to run the Java compiler and text editor at the same time
o Thread based multi tasking
o Thread is a smallest unit of dispatchable code

o The single program can perform two or more tasks simultaneously.
o For example:
o A text editor can format text at the same time that is printing as long as these two

actions are performed by two separate threads.
o Multitasking threads require less overhead than multitasking processes.

Thread Model

o One thread can pause without stopping other parts of your program.

o For example, the idle time created when a thread reads data from a network or
waits for user input can be utilized elsewhere.

o Multithreading allows animation loops to sleep for a second between each
frame without causing the whole system to pause.

o When a thread blocks in a Java program, only the single thread that is blocked pauses.
All other threads continue to run.

o Thread States
o Threads exist in several states.

A thread can be running. It can be ready to run as soon as it gets CPU time.

A running thread can be suspended, which temporarily suspends its activity.

A suspended thread can then be resumed, allowing it to pick up where it left off.

A thread can be blocked when waiting for a resource.

At any time, a thread can be terminated, which halts its execution immediately.

Once terminated, a thread cannot be resumed

o Every thread after creation and before destruction can have any one of four states:

Newly created
o Runnable state
o Blocked
o Dead
o

THREAD LIFE CYCLE

New State

o A thread enters the newly created by using a new operator.

o It is new state or born state immediately after creation. i.e. when a constructor is
called the Thread is created but is not yet to run() method will not begin until it start()
method is called.

o After the start() method is called, the thread will go to the next state, Runnable state.
o Note : in the above cycle stop(), resume() and suspand are deprecated methods. Java

2 strongly discourage their usage in the program

o Runnable state

Once we invoke the start() method, the thread is runnable.

It is divided into two states:

The running state

When the thread is running state, it assigned by CPU cycles and is
actually running.

The Queued state.

When the thread is in Queued state, it is waiting in the Queue and
competing for its turn to spend CPU cycles
It is controlled by Virtual Machine Controller.

When we use yield() method it makes sure other threads of the same
priority have chance to run.

This method cause voluntary move itself to the queued state from the
running state.

IO Blocking
Runnable

New Statement Suspend()

Start()
Wait()

Stop()
Resume()

Sleep()

Run()
Notify()

(Born)
Stop() ends

Run()

Sleep time out

Stop()
I/O finished

Run()

Blocked

Not

Dead
ends

ends

Blocked state

The blocked state is entered when one of the following events occurs:

• The thread itself or another thread calls the suspend() method (it is deprecated)
• The thread calls an object’s wait() met
• The thread itself calls the sleep() method.
• The thread is waiting for some I/O operations to complete.
• The thread will join() another thread.

Dead state

A thread is dead for any one of the following reasons:

• It dies a natural death because the un method exists normally.
• It dies abruptly because an uncaught exception terminates the run method.
• In particular stop() is used to kill the thread. This is depricated.
• To find whether thread is alive i.e. currently running or blocked

Use isAlive() method

• If it returns true the thread is alive

Thread priorities

Java assigns to each thread a priority that determines how that thread should be treated with
respect to the others. Thread priorities are integers that specify the relative priority of one
thread to another. As an absolute value, a priority is meaningless; a higher-priority

thread doesn’t run-priorityanythread fasterifitistheonly threadthanrunninga. lower Instead, a thread’s
priority is used to d the next. This is called a context switch. The rules that determine when a context
switch

takes place are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are
examined, and the highest-priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-
priority thread that does not yield the processor is simply preempted—no
matter what it is doing—by a higher-priority thread. Basically, as soon as a
higher- priority thread wants to run, it does. This is called preemptive
multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows 98, threads of
equal priority are time-sliced automatically in round-robin fashion. For other types of
operating systems, threads of equal priority must voluntarily yield control to their peers.
If they don’t, the other threads will not

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there
must be a way for you to enforce synchronicity when you need it. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, you need some way to ensure that

is, you must prevent one thread from writing data while another thread is in the
middle of reading it. For this purpose, Java implements an elegant twist on an age-old
model of interprocess synchronization: the monitor. The monitor is a control
mechanism first defined by C.A.R. Hoare. You can think of a monitor as a very small
box that can hold only one thread. Once a thread enters a monitor, all other threads
must wait until that thread exits the monitor. In this way, a monitor can be used to
protect a shared asset from being manipulated by more than one thread at a time.

.

Messaging

After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more

threads to talk to each other, via calls to pre messaging system allows a thread to enter a

synchronized method on an object, and then wait there until some other thread explicitly

notifies it to come out.

Thread class and Runnable interface

The Thread Class and the Runnable InterfaceJ

Thread class, its methods, and its companion interface, Runnable. Thread encapsulates a thread of execution.
oSincetheethereal stateyouofa runningcan’tthread, directlyyou will deal with it through its proxy, the Thread
instance that spawned it. To create a new thread, your program will either extend Thread or implement the
Runnable interface.

Main method

When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

o It is the thread from which . other ―chil o Often it must be the last thread to finish execution
because it performs various

shutdown actions.

Although the main thread is created automatically when your program is started, it can be
controlled through a Thread object. To do so, you must obtain a reference to it by calling

the method currentThread(), which is a public static member of Thread. Its general
form is

o static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

The Thread class defines several methods that help manage threads.

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");

System.out.println("After name change: " +
t); try {

for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

}

}}
Current thread: Thread[main,5,main]

After name change: Thread[My

Thread,5,main] 5 4 3 2 1

How to create a thread

In the most general sense, you create a thread by instantiating an object of type Thread.

Java defines two ways in which this can be accomplished:

You can implement the Runnable interface.

You can extend the Thread class, itself.

Implementing thread class

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on
any object that implements Runnable. To implement Runnable, a class need only
implement a single method called run(), which is declared like this:

o public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables,
just like the main thread can. The only difference is that run() establishes the entry point
for another, concurrent thread of execution within your program. This thread will end
when run() returns.

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will
use is shown here:

o Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the
Runnableinterface. This defines where execution of the thread will begin. The name of
the new thread is specified by threadName.

After the new thread is created, it will not start running until you call its start()

method, which is declared within Thread. In essence, start() executes a call to run().

The start() method is shown here:

o void start()

Extending thread class

The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which is
the entry point for the new thread. It must also call start() to begin execution of the new thread.
Here is the preceding program rewritten to extend Thread

// Create a second thread by extending Thread
class NewThread extends Thread {
NewThread() {

// Create a new, second thread

super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {

try {

for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}

} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {
new NewThread(); // create a new
thread try {

for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " +
i); Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure that
the resource will be used by only one thread at a time. The process by which this is achieved is
called synchronization. As you will see, Java provides unique, language-level support for it. Key
to synchronization is the concept of the monitor (also called a semaphore).

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread can
own a monitor at a given time. When a thread acquires a lock, it is said to have entered the
monitor. All other threads attempting to enter the locked monitor will be suspended until the first
thread exits the monitor. These other threads are said to be waiting for the monitor. A thread that
owns a monitor can reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the synchronized

keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated with
them. To enter an object’s m with the synchronized keyword. While a thread is inside a synchronized method,
all other

threads that try to call it (or any other synchronized method) on the same instance have to wait.
To exit the monitor and relinquish control of the object to the next waiting thread, the owner of
the monitor simply returns from the synchronized method.

While creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, it will not work in all cases. To understand why,

consider the following. Imagine that you want to synchronize access to objects of a class that
was not designed for multithreaded access. That is, the class does not use synchronized

methods. Further, this class was not created by you, but by a third party, and you do not have

access to the source code. Thus, you can’t synchronizedadd to the appropriate methods within
the class. How can access to an object of this class be synchronized? Fortunately, the solution to
this problem is quite easy: You simply put calls to the methods defined by this class inside a
synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a
call to a method that is a member of object occurs only after the current thread has successfully
entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within the
run() method:
// This program uses a synchronized block.

class Callme {

void call(String msg) {
System.out.print("[" +
msg); try {
Thread.sleep(1000);

} catch (InterruptedException e) {
System.out.println("Interrupted");

}

System.out.println("]");
}

}

class Caller implements Runnable
{ String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)
{ target = targ;
msg = s;

t = new Thread(this);
t.start();

}

// synchronize calls to
call() public void run() {

synchronized(target) { // synchronized
block target.call(msg);

}
}

}

class Synch1 {

public static void main(String args[]) {
Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to
end try {
ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}

}
}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement
is used inside Caller’srun() method. This causes the same correct output as the preceding
example, because each thread waits for the prior one to finish before proceeding.

Daemon Threads

A ―daemon‖ thread is one that is supposed to as the program is running, but is not part of the essence of the
program. Thus when all of the non-daemon threads complete, the program is terminated. you an find out if a
thread is a daemon

by calling isDaemon(), and you can turn the setDaemon().if a thread is a daemon, then any threads it creates
will automatically be daemons.

INTER-THREAD COMMUNICATION IN JAVA

Inter-thread communication or Co-operation is all about allowing synchronized threads to
communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in
its critical section and another thread is allowed to enter (or lock) in the same critical section to
be executed.It is implemented by following methods of Object class:

wait()

notify()

notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized
method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws waits for the specified amount of

InterruptedException time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on
this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the
discretion of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.
2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it
releases the lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable
state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the
object.

Why wait(), notify() and notifyAll() methods are defined in Object class not
Thread class?

It is because they are related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or notifyAll() after the specified amount of time, sleep is

methods completed.

Example of inter thread communication in java

Let's see the simple example of inter thread communication.

1. class Customer{
2. int amount=10000;

3.
4. synchronized void withdraw(int amount){
5. System.out.println("going to withdraw...");

6.
7. if(this.amount<amount){
8. System.out.println("Less balance; waiting for deposit...");
9. try{wait();}catch(Exception e){}
10. }

11. this.amount-=amount;
12. System.out.println("withdraw completed...");
13. }

14.

15. synchronized void deposit(int amount){
16. System.out.println("going to deposit...");

17. this.amount+=amount;
18. System.out.println("deposit completed... ");
19. notify();
20. }
21. }

22.

23. class Test{
24. public static void main(String args[]){
25. final Customer c=new Customer();
26. new Thread(){
27. public void run(){c.withdraw(15000);}
28. }.start();
29. new Thread(){
30. public void run(){c.deposit(10000);}
31. }.start();
32.
33. }}

Output: going to withdraw...

Less balance; waiting for deposit...

going to deposit...

deposit completed...
withdraw completed

INTERRUPTING A THREAD:

If any thread is in sleeping or waiting state (i.e. sleep() or wait() is invoked), calling the interrupt()

method on the thread, breaks out the sleeping or waiting state throwing InterruptedException. If the

thread is not in the sleeping or waiting state, calling the interrupt() method performs normal behaviour

and doesn't interrupt the thread but sets the interrupt flag to true. Let's first see the methods provided by

the Thread class for thread interruption.

The 3 Methods Provided By The Thread Class For Interrupting A Thread

public void interrupt()

public static boolean interrupted()

public boolean isInterrupted()

Example of interrupting a thread that stops working

In this example, after interrupting the thread, we are propagating it, so it will stop working. If we don't

want to stop the thread, we can handle it where sleep() or wait() method is invoked. Let's first see the

example where we are propagating the exception.

1. class TestInterruptingThread1 extends Thread{
2. public void run(){
3. try{
4. Thread.sleep(1000);
5. System.out.println("task");
6. }catch(InterruptedException e){
7. throw new RuntimeException("Thread
interrupted..."+e); 8. }
9.

10. }

11.

12. public static void main(String args[]){
13. TestInterruptingThread1 t1=new TestInterruptingThread1();
14. t1.start();
15. try{
16. t1.interrupt();
17. }catch(Exception e){System.out.println("Exception handled "+e);}

18. 18.

19. }

20. }

Output:Exception in thread-0
java.lang.RuntimeException: Thread interrupted...

java.lang.InterruptedException: sleep interrupted at A.run(A.java:7)

Example of interrupting a thread that doesn't stop working

In this example, after interrupting the thread, we handle the exception, so it will break out the sleeping but

will not stop working.

1. class TestInterruptingThread2 extends Thread{
2. public void run(){
3. try{
4. Thread.sleep(1000);
5. System.out.println("task");
6. }catch(InterruptedException e){
7. System.out.println("Exception handled
"+e); 8. }
9. System.out.println("thread is running...");
10. }

11.

12. public static void main(String args[]){
13. TestInterruptingThread2 t1=new TestInterruptingThread2();
14. t1.start();
15.

16. t1.interrupt();

17.

18. }

19. }

Output:Exception handled

java.lang.InterruptedException: sleep interrupted thread is running...

Example of interrupting thread that behaves normally

If thread is not in sleeping or waiting state, calling the interrupt() method sets the interrupted flag to true
that can be used to stop the thread by the java programmer later.

1. class TestInterruptingThread3 extends Thread{

2.

3. public void run(){
4. for(int i=1;i<=5;i++)
5. System.out.println(i);

6. }

7.

8. public static void main(String args[]){
9. TestInterruptingThread3 t1=new TestInterruptingThread3();
10. t1.start();
11.
12. t1.interrupt();

13.

14. }

15. }

Output:1

2

3

4
5

What About Isinterrupted And Interrupted Method?

The isInterrupted() method returns the interrupted flag either true or false. The static interrupted() method
returns the interrupted flag afterthat it sets the flag to false if it is true.

19.

22.

24.

1. public class TestInterruptingThread4 extends Thread{
2.

3. public void run(){

4. for(int i=1;i<=2;i++){

5. if(Thread.interrupted()){
6. System.out.println("code for interrupted
thread"); 7. }
8. else{
9. System.out.println("code for normal thread");
10. }

11.

12. }//end of for loop
13. }
14.

15. public static void main(String args[]){

16.

17. TestInterruptingThread4 t1=new TestInterruptingThread4();
18. TestInterruptingThread4 t2=new TestInterruptingThread4();

20. t1.start();
21. t1.interrupt();

23. t2.start();

25. }

26. }

Output:Code for interrupted thread code for normal
thread

code for normal thread code for
normal thread

UNIT-1V

Collection Framework in java –Introduction to java collections- overview of java collection
frame work-generics-commonly used collection classes- Array List- vector -hash table-stack-
enumeration-iterator-string tokenizer -random -scanner -calendar and properties

Files – streams–byte streams- character stream- text input/output- binary input/output- file
management using file class.

Connecting to Database –JDBC Type 1 to 4 drivers- connecting to a database- quering a
database and processing the results- updating data with JDBC Data Access Object(DAO)

Collections in Java

Collections in java is a framework that provides an architecture to store and manipulate the
group of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,
deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many

interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList,

PriorityQueue, HashSet, LinkedHashSet, TreeSet etc).

WHAT IS COLLECTION IN JAVA

Collection represents a single unit of objects i.e. a group.

What is framework in java

provides readymade architecture.

represents set of classes and interface.

is optional.

What is Collection framework

Collection framework represents a unified architecture for storing and manipulating group of
objects. It has:

1. Interfaces and its implementations i.e. classes
2. Algorithm

Hierarchy of Collection Framework

Let us see the hierarchy of collection framework.The java.util package contains all the classes
and interfaces for Collection framework.

Methods of Collection interface

There are many methods declared in the Collection interface. They are as follows:

No. Method Description

1 public boolean
add(Object

is used to insert an element in this collection. element)

is used to insert the specified collection elements in the invoking

2 public boolean addAll(collection c) collection.

3 public boolean
remove(Object

is used to delete an element from this
collection. element)

4 public boolean is used to delete all the elements of specified collection from
the removeAll(Collection c) invoking collection.

5 public boolean retainAll(Collection is used to delete all the elements of invoking collection except
 c) the specified collection.

6 public int size() return the total number of elements in the collection.

7 public void clear() removes the total no of element from the collection.

contains(object
8 public boolean is used to search an

element. element)

boolean
9 public is used to search the specified collection in this

collection. containsAll(Collection c)

10 public Iterator iterator() returns an iterator.

11 public Object[] toArray() converts collection into array.

12 public boolean isEmpty() checks if collection is empty.

public boolean equals(Object

13 element) matches two collection.

14 public int hashCode() returns the hashcode number for collection.

Iterator interface

Iterator interface provides the facility of iterating the elements in forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:

1. public boolean hasNext() it returns true if iterator has more elements.
2. public object next() it returns the element and moves the cursor pointer to the next element.

3. public void remove() it removes the last elements returned by the iterator. It is rarely used.

Java ArrayList class

Java ArrayList class uses a dynamic array for storing the elements.It extends AbstractList
class and implements List interface.
Java ArrayList class can contain duplicate elements.

Java ArrayList class maintains insertion order.

Java ArrayList class is non synchronized.

Java ArrayList allows random access because array works at the index basis.

In Java ArrayList class, manipulation is slow because a lot of shifting needs to be
occurred if any element is removed from the array list.

Java Non-generic Vs Generic Collection

Java collection framework was non-generic before JDK 1.5. Since 1.5, it is generic.

Java new generic collection allows you to have only one type of object in collection. Now it is
type safe so typecasting is not required at run time.

Let's see the old non-generic example of creating java collection.

1. ArrayList al=new ArrayList();//creating old non-generic arraylist

Let's see the new generic example of creating java collection.

1. ArrayList<String> al=new ArrayList<String>();//creating new generic arraylist

In generic collection, we specify the type in angular braces. Now ArrayList is forced to have

only specified type of objects in it. If you try to add another type of object, it gives compile time

error.

Example of Java ArrayList class

1. import java.util.*;
2. class TestCollection1{
3. public static void main(String args[]){

4.
5. ArrayList<String> al=new ArrayList<String>();//creating arraylist
6. al.add("Ravi");//adding object in arraylist
7. al.add("Vijay");
8. al.add("Ravi");
9. al.add("Ajay");

10.

11. Iterator itr=al.iterator();//getting Iterator from arraylist to traverse elements
12. while(itr.hasNext()){
13. System.out.println(itr.next());
14. }
15. }

16. }

Ravi

Vijay

Ravi

Ajay

Two ways to iterate the elements of collection in java

1. By Iterator interface.
2. By for-each loop.

In the above example, we have seen traversing ArrayList by Iterator. Let's see the example to
traverse ArrayList elements using for-each loop.

Iterating the elements of Collection by for-each loop

1. import java.util.*;
2. class TestCollection2{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ravi");
8. al.add("Ajay");
9. for(String obj:al)
10. System.out.println(obj);
11. }
12. }

Ravi

Vijay

Ravi

Ajay

User-defined class objects in Java ArrayList

1. class Student{
2. int rollno;

3. String name;
4. int age;
5. Student(int rollno,String name,int age){
6. this.rollno=rollno;
7. this.name=name;
8. this.age=age;
9. }
10. }

1. import java.util.*;
2. public class TestCollection3{
3. public static void main(String args[]){
4. //Creating user-defined class objects
5. Student s1=new Student(101,"Sonoo",23);
6. Student s2=new Student(102,"Ravi",21);
7. Student s2=new Student(103,"Hanumat",25);

8.
9. ArrayList<Student> al=new ArrayList<Student>();//creating arraylist
10. al.add(s1);//adding Student class object
11. al.add(s2);
12. al.add(s3);

13. Iterator itr=al.iterator();
14. //traversing elements of ArrayList object
15. while(itr.hasNext()){
16. Student st=(Student)itr.next();

17. System.out.println(st.rollno+" "+st.name+" "+st.age);
19. }
20. }

21. }

101 Sonoo 23
102 Ravi 21
103 Hanumat 25

Example of addAll(Collection c) method

1. import java.util.*;
2. class TestCollection4{
3. public static void main(String args[]){

4.
5. ArrayList<String> al=new ArrayList<String>();
6. al.add("Ravi");
7. al.add("Vijay");
8. al.add("Ajay");
10. ArrayList<String> al2=new ArrayList<String>();
11. al2.add("Sonoo");
12. al2.add("Hanumat")
; 13.
14. al.addAll(al2);

15.

16. Iterator itr=al.iterator();
17. while(itr.hasNext()){
18. System.out.println(itr.next());
19. }
20. }

21. }

Ravi

Vijay

Ajay

Sonoo

Hanumat

Example of removeAll() method

1. import java.util.*;
2. class TestCollection5{
3. public static void main(String args[]){

5. ArrayList<String> al=new ArrayList<String>();
6. al.add("Ravi");
7. al.add("Vijay");
8. al.add("Ajay");
9.

10. ArrayList<String> al2=new ArrayList<String>();
11. al2.add("Ravi");
12. al2.add("Hanumat")
; 13.
14. al.removeAll(al2);

15.

16. System.out.println("iterating the elements after removing the elements of al2...");
17. Iterator itr=al.iterator();
18. while(itr.hasNext()){
19. System.out.println(itr.next());
20. }

21.

22. }

23. }

iterating the elements after removing the elements of al2...

Vijay

Ajay

Example of retainAll() method

1. import java.util.*;
2. class TestCollection6{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ajay");
8. ArrayList<String> al2=new ArrayList<String>();
9. al2.add("Ravi");
10. al2.add("Hanumat")
; 11.
12. al.retainAll(al2);

13.

14. System.out.println("iterating the elements after retaining the elements of al2...");
15. Iterator itr=al.iterator();
16. while(itr.hasNext()){
17. System.out.println(itr.next());
18. }

19. }
20. }

iterating the elements after retaining the elements of al2...

Ravi

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are , FileInputStream and
FileOutputStream. Following is an example which makes use of these two classes to copy an
input file into an output file:

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

{

FileInputStream in = null;
FileOutputStream out = null;

try {

in = new FileInputStream("input.txt"); out
= new FileOutputStream("output.txt");
int c;

while ((c = in.read()) != -1)
{ out.write(c);

}

}finally {

if (in != null) {
in.close();

}

if (out != null) {

out.close();

}

}

}

}

Now let's have a file input.txt with the following content:

This is test for copy file.
As a next step, compile above program and execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's put above code in CopyFile.java file and
do the following:

$javac CopyFile.java

$java CopyFile

Character Streams
Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character
streams are used to perform input and output for 16-bit unicode. Though there are many classes
related to character streams but the most frequently used classes are , FileReader and
FileWriter.. Though internally FileReader uses FileInputStream and FileWriter uses
FileOutputStream but here major difference is that FileReader reads two bytes at a time and
FileWriter writes two bytes at a time.

We can re-write above example which makes use of these two classes to copy an input file
(having unicode characters) into an output file:

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

{

FileReader in = null;
FileWriter out = null;

try {

in = new FileReader("input.txt");
out = new FileWriter("output.txt");

int c;

while ((c = in.read()) != -1)
{ out.write(c);

}

}finally {

if (in != null) {
in.close();

}

if (out != null) {
out.close();

}

}
}

}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's put above code in CopyFile.java file and
do the following:

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where user's program can take
input from a keyboard and then produce output on the computer screen. If you are aware if C or
C++ programming languages, then you must be aware of three standard devices STDIN,
STDOUT and STDERR. Similar way Java provides following three standard streams

Standard Input: This is used to feed the data to user's program and usually a keyboard is used as
standard input stream and represented as System.in.

Standard Output: This is used to output the data produced by the user's program and
usually a computer screen is used to standard output stream and represented as
System.out.

Standard Error: This is used to output the error data produced by the user's program
and usually a computer screen is used to standard error stream and represented as
System.err.

Following is a simple program which creates InputStreamReader to read standard input stream
until the user types a "q":

import java.io.*;

public class ReadConsole {

public static void main(String args[]) throws IOException

{

InputStreamReader cin = null;

try {

cin = new InputStreamReader(System.in);
System.out.println("Enter characters, 'q' to quit.");
char c;

do {

c = (char) cin.read();
System.out.print(c);

} while(c !=
'q'); }finally {

if (cin != null)
{ cin.close();

}

}

}
}

Let's keep above code in ReadConsole.java file and try to compile and execute it as below. This
program continues reading and outputting same character until we press 'q':

$javac ReadConsole.java
$java ReadConsole

Enter characters, 'q' to quit.

1 1

e
e
q
q

Reading and Writing Files:

As described earlier, A stream can be defined as a sequence of data. The InputStream is used to
read data from a source and the OutputStream is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

The two important streams are FileInputStream and FileOutputStream, which would be
discussed in this tutorial:

FileInputStream:

This stream is used for reading data from the files. Objects can be created using the keyword new
and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read the
file.:

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we
create a file object using File() method as follows:

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);
Once you have InputStream object in hand, then there is a list of helper methods which can be
used to read to stream or to do other operations on the stream.

SN Methods with Description

public void close() throws IOException{}

1 This method closes the file output stream. Releases any system resources associated with
the file. Throws an IOException.

protected void finalize()throws IOException {}

2 This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.
public int read(int r)throws IOException{}

3 This method reads the specified byte of data from the InputStream. Returns an int. Returns
the next byte of data and -1 will be returned if it's end of file.

public int read(byte[] r) throws IOException{}

4 This method reads r.length bytes from the input stream into an array. Returns the total
number of bytes read. If end of file -1 will be returned.

5 public int available() throws IOException{}
Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to the following
links:

ByteArrayInputStream

DataInputStream

FileOutputStream:

FileOutputStream is used to create a file and write data into it. The stream would create a file, if
it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the
file:

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First,
we create a file object using File() method as follows:

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper methods, which can be
used to write to stream or to do other operations on the stream.

SN Methods with Description

public void close() throws IOException{}

1 This method closes the file output stream. Releases any system resources associated with
the file. Throws an IOException.

protected void finalize()throws IOException {}

2 This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3 public void write(int w)throws IOException{}

This methods writes the specified byte to the output stream.

4 public void write(byte[] w)
Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available, for more detail you can refer to the following
links:

ByteArrayOutputStream

DataOutputStream

Example:

Following is the example to demonstrate InputStream and OutputStream:

import java.io.*;

public class fileStreamTest{

public static void main(String args[]){

try{

byte bWrite [] = {11,21,3,40,5};

OutputStream os = new FileOutputStream("test.txt");
for(int x=0; x < bWrite.length ; x++){

os.write(bWrite[x]); // writes the bytes

}

os.close();

InputStream is = new FileInputStream("test.txt");

int size = is.available();

for(int i=0; i< size; i++){
System.out.print((char)is.read() + " ");

}

is.close();
}catch(IOException e){

System.out.print("Exception");

}
}

}

The above code would create file test.txt and would write given numbers in binary format. Same
would be output on the stdout screen.

File Navigation and I/O:

There are several other classes that we would be going through to get to know the basics of File
Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

Directories in Java:
A directory is a File which can contains a list of other files and directories. You use File object to
create directories, to list down files available in a directory. For complete detail check a list of all
the methods which you can call on File object and what are related to directories.

Creating Directories:

There are two useful File utility methods, which can be used to create directories:

The mkdir() method creates a directory, returning true on success and false on failure.
Failure indicates that the path specified in the File object already exists, or that the
directory cannot be created because the entire path does not exist yet.

The mkdirs() method creates both a directory and all the parents of the directory.

http://www.tutorialspoint.com/java/java_file_class.htm
http://www.tutorialspoint.com/java/java_filereader_class.htm
http://www.tutorialspoint.com/java/java_filewriter_class.htm

Following example creates "/tmp/user/java/bin" directory:

import java.io.File;

public class CreateDir {

public static void main(String args[]) {
String dirname = "/tmp/user/java/bin";
File d = new File(dirname);

// Create directory now.
d.mkdirs();

}

}

Compile and execute above code to create "/tmp/user/java/bin".

Note: Java automatically takes care of path separators on UNIX and Windows as per
conventions. If you use a forward slash (/) on a Windows version of Java, the path will still
resolve correctly.

Listing Directories:

You can use list() method provided by File object to list down all the files and directories
available in a directory as follows:

import java.io.File;

public class ReadDir {

public static void main(String[] args) {

File file = null;

String[] paths;

try{

// create new file object
file = new File("/tmp");

// array of files and directory
paths = file.list();

// for each name in the path array
for(String path:paths)

{

// prints filename and directory name
System.out.println(path);

}

}catch(Exception e){
// if any error occurs
e.printStackTrace();

}

}
}

This would produce following result based on the directories and files available in your /tmp
directory:
test1.txt

test2.txt

ReadDir.java

ReadDir.class

JDBC

JDBC stands for Java Database Connectivity, which is a standard Java API for database-
independent connectivity between the Java programming language and a wide range of
databases.

The JDBC library includes APIs for each of the tasks commonly associated with database usage:

Making a connection to a database

Creating SQL or MySQL statements

Executing that SQL or MySQL queries in the database

Viewing & Modifying the resulting records

Fundamentally, JDBC is a specification that provides a complete set of interfaces that allows for
portable access to an underlying database. Java can be used to write different types of
executables, such as:

Java Applications

Java Applets

Java Servlets

Java ServerPages (JSPs)

Enterprise JavaBeans (EJBs)

All of these different executables are able to use a JDBC driver to access a database and take
advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to contain database-
independent code.

JDBC Architecture:

The JDBC API supports both two-tier and three-tier processing models for database access but in
general JDBC Architecture consists of two layers:

JDBC API: This provides the application-to-JDBC Manager connection.

JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source. The
driver manager is capable of supporting multiple concurrent drivers connected to multiple
heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with
respect to the JDBC drivers and the Java application:

Common JDBC Components:

The JDBC API provides the following interfaces and classes:

DriverManager: This class manages a list of database drivers. Matches connection

requests from the java application with the proper database driver using communication
subprotocol. The first driver that recognizes a certain subprotocol under JDBC will be
used to establish a database Connection.

Driver: This interface handles the communications with the database server. You will
interact directly with Driver objects very rarely. Instead, you use DriverManager objects,
which manages objects of this type. It also abstracts the details associated with working
with Driver objects

Connection : This interface with all methods for contacting a database. The connection
object represents communication context, i.e., all communication with database is
through connection object only.

Statement : You use objects created from this interface to submit the SQL statements to
the database. Some derived interfaces accept parameters in addition to executing stored
procedures.

ResultSet: These objects hold data retrieved from a database after you execute an SQL
query using Statement objects. It acts as an iterator to allow you to move through its data.
SQLException: This class handles any errors that occur in a database application.

Creating JDBC Application:

There are following six steps involved in building a JDBC application:

Import the packages . Requires that you include the packages containing the JDBC

classes needed for database programming. Most often, using import java.sql.* will
suffice.

Register the JDBC driver . Requires that you initialize a driver so you can open a communications
channel with the database.

Open a connection . Requires using the DriverManager.getConnection() method to

create a Connection object, which represents a physical connection with the database.

Execute a query . Requires using an object of type Statement for building and
submitting an SQL statement to the database.

Extract data from result set . Requires that you use the appropriate ResultSet.getXXX()
method to retrieve the data from the result set.

Clean up the environment . Requires explicitly closing all database resources versus
relying on the JVM's garbage collection.

Creating JDBC Application:

There are six steps involved in building a JDBC application which I'm going to brief in
this tutorial:

Import the packages:

This requires that you include the packages containing the JDBC classes needed for
database programming. Most often, using import java.sql.* will suffice as follows:
//STEP 1. Import required packages

import java.sql.*;

Register the JDBC driver:

This requires that you initialize a driver so you can open a communications channel with
the database. Following is the code snippet to achieve this:
//STEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

Open a connection:

This requires using the DriverManager.getConnection() method to create a Connection
object, which represents a physical connection with the database as follows:

//STEP 3: Open a connection

// Database credentials
static final String USER = "username";

static final String PASS = "password";

System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

Execute a query:

This requires using an object of type Statement or PreparedStatement for building and
submitting an SQL statement to the database as follows:
//STEP 4: Execute a query

System.out.println("Creating statement...");

stmt = conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

If there is an SQL UPDATE,INSERT or DELETE statement required, then following
code snippet would be required:
//STEP 4: Execute a query

System.out.println("Creating statement...");

stmt = conn.createStatement();

String sql;

sql = "DELETE FROM Employees";

ResultSet rs = stmt.executeUpdate(sql);

Extract data from result set:

This step is required in case you are fetching data from the database. You can use the

appropriate ResultSet.getXXX() method to retrieve the data from the result set as follows:

//STEP 5: Extract data from result set

while(rs.next()){

//Retrieve by column name

int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values

System.out.print("ID: " + id);

System.out.print(", Age: " + age);

System.out.print(", First: " + first);

System.out.println(", Last: " + last);

}

Clean up the environment:

You should explicitly close all database resources versus relying on the JVM's garbage
collection as follows:
//STEP 6: Clean-up environment

rs.close();

stmt.close();

conn.close();

First JDBC Program:

Based on the above steps, we can have following consolidated sample code which we
can use as a template while writing our JDBC code:

This sample code has been written based on the environment and database setup done in
Environment chapter.
//STEP 1. Import required packages

import java.sql.*;

public class FirstExample {

// JDBC driver name and database URL

static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

static final String DB_URL = "jdbc:mysql://localhost/EMP";

// Database credentials

static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {

Connection conn = null;

Statement stmt = null;
try{

//STEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

//STEP 3: Open a connection

System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

//STEP 4: Execute a query

System.out.println("Creating statement...");

stmt = conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

//STEP 5: Extract data from result set

while(rs.next()){

//Retrieve by column name

int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values

System.out.print("ID: " + id);

System.out.print(", Age: " + age);

System.out.print(", First: " + first);

System.out.println(", Last: " + last);

}

//STEP 6: Clean-up environment

rs.close();

stmt.close();

conn.close();

}catch(SQLException se){

//Handle errors for JDBC

se.printStackTrace();

}catch(Exception e){

//Handle errors for Class.forName

e.printStackTrace();

}finally{

//finally block used to close resources

try{

if(stmt!=null)

stmt.close();

}catch(SQLException se2){

}// nothing we can do

try{

if(conn!=null)

conn.close();

}catch(SQLException se){

se.printStackTrace();

}//end finally try

}//end try

System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac FirstExample.java

C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...

Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma

ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 28, First: Sumit, Last: Mittal

C:\>

SQLException Methods:

A SQLException can occur both in the driver and the database. When such an exception
occurs, an object of type SQLException will be passed to the catch clause.

The passed SQLException object has the following methods available for retrieving
additional information about the exception:

Method

getErrorCode()

getMessage()

getSQLState()

Description

Gets the error number associated with the exception.

Gets the JDBC driver's error message for an error
handled by the driver or gets the Oracle error number
and message for a database error.

Gets the XOPEN SQLstate string. For a JDBC driver
error, no useful information is returned from this

getNextException()

printStackTrace()

printStackTrace(PrintStream s)

printStackTrace(PrintWriter w)

method. For a database error, the five-digit XOPEN
SQLstate code is returned. This method can return null.

Gets the next Exception object in the exception chain.

Prints the current exception, or throwable, and its
backtrace to a standard error stream.

Prints this throwable and its backtrace to the print
stream you specify.

Prints this throwable and its backtrace to the print
writer you specify.

By utilizing the information available from the Exception object, you can catch an
exception and continue your program appropriately. Here is the general form of a try
block:

try {

// Your risky code goes between these curly braces!!!
}

catch(Exception ex) {

// Your exception handling code goes between these

// curly braces, similar to the exception clause

// in a PL/SQL block.

}

finally {
// Your must-always-be-executed code goes between these

// curly braces. Like closing database connection.

}

JDBC - Data Types:

The following table summarizes the default JDBC data type that the Java data type is converted to
when you call the setXXX() method of the PreparedStatement or CallableStatement object or the
ResultSet.updateXXX() method.

SQL
JDBC/Java setXXX updateXXX

VARCHAR java.lang.String setString updateString

CHAR java.lang.String setString updateString

LONGVARCHAR java.lang.String setString updateString

BIT Boolean setBoolean updateBoolean

NUMERIC java.math.BigDecimal setBigDecimal updateBigDecimal

TINYINT Byte setByte updateByte

SMALLINT Short setShort updateShort

INTEGER Int setInt updateInt

BIGINT Long setLong updateLong

REAL Float setFloat updateFloat

FLOAT Float setFloat updateFloat

DOUBLE Double setDouble updateDouble

VARBINARY byte[] setBytes updateBytes

BINARY byte[] setBytes updateBytes

DATE java.sql.Date setDate updateDate

TIME java.sql.Time setTime updateTime

TIMESTAMP java.sql.Timestamp setTimestamp updateTimestamp

CLOB java.sql.Clob setClob updateClob

BLOB java.sql.Blob setBlob updateBlob

ARRAY java.sql.Array setARRAY updateARRAY

REF java.sql.Ref SetRef updateRef

STRUCT java.sql.Struct SetStruct updateStruct

JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types. The
ResultSet object now has updateBLOB(), updateCLOB(), updateArray(), and updateRef()
methods that enable you to directly manipulate the respective data on the server.

The setXXX() and updateXXX() methods enable you to convert specific Java types to
specific JDBC data types. The methods, setObject() and updateObject(), enable you to
map almost any Java type to a JDBC data type.

ResultSet object provides corresponding getXXX() method for each data type to retrieve
column value. Each method can be used with column name or by its ordinal position.

SQL JDBC/Java setXXX getXXX

VARCHAR java.lang.String setString getString

CHAR java.lang.String setString getString

LONGVARCHAR java.lang.String setString getString

BIT Boolean setBoolean getBoolean

NUMERIC java.math.BigDecimal setBigDecimal getBigDecimal

TINYINT Byte setByte getByte

SMALLINT Short setShort getShort

INTEGER Int setInt getInt

BIGINT Long setLong getLong

REAL Float setFloat getFloat

FLOAT Float setFloat getFloat

DOUBLE Double setDouble getDouble

VARBINARY byte[] setBytes getBytes

BINARY byte[] setBytes getBytes

DATE java.sql.Date setDate getDate

TIME java.sql.Time setTime getTime

TIMESTAMP java.sql.Timestamp setTimestamp getTimestamp

CLOB java.sql.Clob setClob getClob

BLOB java.sql.Blob setBlob getBlob

ARRAY java.sql.Array setARRAY getARRAY

REF java.sql.Ref SetRef getRef

STRUCT java.sql.Struct SetStruct getStruct

Sample Code:

This sample example can serve as a template when you need to create your own JDBC
application in the future.

This sample code has been written based on the environment and database setup done in
previous chapter.

Copy and past following example in FirstExample.java, compile and run as follows:

//STEP 1. Import required
packages import java.sql.*;

public class FirstExample {

// JDBC driver name and database URL

static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/EMP";

// Database credentials

static final String USER = "username";
static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;

Statement stmt = null;
try{

//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");

//STEP 3: Open a connection
System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

//STEP 4: Execute a query
System.out.println("Creating statement...");
stmt = conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);
//STEP 5: Extract data from result set
while(rs.next()){

//Retrieve by column name
int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values

System.out.print("ID: " + id);
System.out.print(", Age: " + age);

System.out.print(", First: " + first);
System.out.println(", Last: " + last);

}

//STEP 6: Clean-up environment
rs.close();

stmt.close();

conn.close();
}catch(SQLException se){

//Handle errors for JDBC
se.printStackTrace();

}catch(Exception e){

//Handle errors for Class.forName
e.printStackTrace();

}finally{

//finally block used to close resources
try{

if(stmt!=null)

stmt.close();
}catch(SQLException
se2){ }// nothing we can do
try{

if(conn!=null)

conn.close();
}catch(SQLException se){

se.printStackTrace();

}//end finally try

}//end try
System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac FirstExample.java

C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...

Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali
ID: 101, Age: 25, First: Mahnaz, Last: Fatma

ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 28, First: Sumit, Last: Mittal

C:\>

JDBC Drivers Types:
JDBC driver implementations vary because of the wide variety of operating systems and
hardware platforms in which Java operates. Sun has divided the implementation types into four
categories, Types 1, 2, 3, and 4, which is explained below:

Type 1: JDBC-ODBC Bridge Driver:
In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client
machine. Using ODBC requires configuring on your system a Data Source Name (DSN) that
represents the target database.
When Java first came out, this was a useful driver because most databases only supported ODBC
access but now this type of driver is recommended only for experimental use or when no other
alternative is available.

The JDBC-ODBC bridge that comes with JDK 1.2 is a good example of this kind of driver.

Type 2: JDBC-Native API:

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls which are unique
to the database. These drivers typically provided by the database vendors and used in the same
manner as the JDBC-ODBC Bridge, the vendor-specific driver must be installed on each client
machine.
If we change the Database we have to change the native API as it is specific to a database and
they are mostly obsolete now but you may realize some speed increase with a Type 2 driver,
because it eliminates ODBC's overhead.

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Type 3: JDBC-Net pure Java:
In a Type 3 driver, a three-tier approach is used to accessing databases. The JDBC clients use
standard network sockets to communicate with an middleware application server. The socket
information is then translated by the middleware application server into the call format required
by the DBMS, and forwarded to the database server. This kind of driver is extremely flexible,
since it requires no code installed on the client and a single driver can actually provide access to
multiple databases.

You can think of the application server as a JDBC "proxy," meaning that it makes calls for the
client application. As a result, you need some knowledge of the application server's configuration
in order to effectively use this driver type. Your application server might use a Type 1, 2, or 4
driver to communicate with the database, understanding the nuances will prove helpful.

Type 4: 100% pure Java:
In a Type 4 driver, a pure Java-based driver that communicates directly with vendor's database
through socket connection. This is the highest performance driver available for the database and

is usually provided by the vendor itself.
This kind of driver is extremely flexible, you don't need to install special software on the client
or server. Further, these drivers can be downloaded dynamically.

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their
network protocols, database vendors usually supply type 4 drivers.

Which Driver should be used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver
type is 4.

If your Java application is accessing multiple types of databases at the same time, type 3 is the
preferred driver.

Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available yet for your
database.

The type 1 driver is not considered a deployment-level driver and is typically used for
development and testing purposes only.

UNIT-V

GUI Programming with Swing –The AWT class hierarchy- introduction to swing- swing Vs
AWT- overview of some swing components –JButton-JLabel- JTextField-JTextArea- simple
applications- Layout management –Layout manager types –border- grid and flow

Event Handling: Events- Event sources- Event classes- Event Listeners- Delegation event
model- Example: handling mouse events- Adapter classes.

INTRODUCTION OF SWING

The Swing-related classes are contained in javax.swing and its subpackages, such

as javax.swing.tree. Many other Swing-related classes and interfaces exist that are
not examined in this chapter.

The remainder of this chapter examines various Swing components and
illustrates them through sample applets.

JApplet

Fundamental to Swing is the JApplet class, which extends Applet. Applets that
useSwing must be subclasses of JApplet. JApplet is rich with functionality that is notfound in

Applet. For example, JApplet supports various ―panes,‖heglass such pane, and the root pane. For the
examples in this chapter, we will not be using most of

JApplet’s enhanced features. However,AppletandJAppletoneis diffe important to this discussion,
because it is used by the sample applets in this chapter. When

adding a component to an instance of JApplet, do not invoke the add() method of the applet.
Instead, call add() for the content pane of the JApplet object. The content pane can be obtained
via the method shown here:

Container getContentPane()

The add() method of Container can be used to add a component to a content pane.
Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

Icons and Labels

In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an image.
Two of its constructors are shown here:

ImageIcon(String filename)

ImageIcon(URL url)

The first form uses the image in the file named filename. The second form uses the image in the
resource identified by url.

The ImageIcon class implements the Icon interface that declares the
methods shown here:
Method Description

int getIconHeight() Returns the height of the
icon in pixels.

int getIconWidth() Returns the width of the
icon in pixels.

void paintIcon(Component comp, Graphics g,
int x, int y)

Paints the icon at position x, y on the
graphics context g. Additional
information about the paint

operation can be provided in comp.

Swing labels are instances of the JLabel class, which extends JComponent. It can display text
and/or an icon. Some of its constructors are shown here:
JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label. The align argument is either
LEFT,RIGHT, CENTER, LEADING, or TRAILING. These constants are defined in the
SwingConstants interface, along with several others used by the Swing classes.

The icon and text associated with the label can be read and written by the
following methods:

Icon getIcon() String
getText() void
setIcon(Icon i) void
setText(String s)
Here, i and s are the icon and text, respectively.

The following example illustrates how to create and display a label containing bothan icon and a
string. The applet begins by getting its content pane. Next, an ImageIcon object is created for
the file france.gif. This is used as the second argument to the JLabel constructor. The first and
last arguments for the JLabel constructor are the label text and the alignment. Finally, the label
is added to the content pane.

import java.awt.*;
import javax.swing.*;
/* <applet code="JLabelDemo" width=250 height=150> </applet>*/

public class JLabelDemo extends JApplet
{ public void init() {
// Get content pane

Container contentPane =

getContentPane(); // Create an icon
ImageIcon ii = new
ImageIcon("france.gif"); // Create a label

JLabel jl = new JLabel("France", ii,
JLabel.CENTER); // Add label to the content pane
contentPane.add(jl);

}

}
Output from this applet is shown here:

Text Fields

The Swing text field is encapsulated by the JTextComponent class, which extends
JComponent. It provides functionality that is common to Swing text components. One of its
subclasses is JTextField, which allows you to edit one line of text. Some of its constructors are
shown here:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.

The following example illustrates how to create a text field. The applet begins by getting its
content pane, and then a flow layout is assigned as its layout manager. Next, a JTextField object
is created and is added to the content pane.

import java.awt.*;
import javax.swing.*;
/*

<applet code="JTextFieldDemo" width=300 height=50>
</applet>

*/

public class JTextFieldDemo extends JApplet {
JTextField jtf;

public void init() {
// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Add text field to content pane

jtf = new JTextField(15);
contentPane.add(jtf);

}

}
Output from this applet is shown here:

Buttons

Swing buttons provide features that are not found in the Button class defined by
theAWT. For example, you can associate an icon with a Swing button. Swing buttons are
subclasses of the AbstractButton class, which extends JComponent. AbstractButton contains
many methods that allow you to control the behavior of buttons, check boxes, and radio buttons.
For example, you can define different icons that are displayed for the component when it is
disabled, pressed, or selected. Another icon can be used as a rollover icon, which is displayed
when the mouse is positioned over that component.

The following are the methods that control this behavior:
void setDisabledIcon(Icon di)

void setPressedIcon(Icon pi)

void setSelectedIcon(Icon si)

void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for these different conditions.

The text associated with a button can be read and written via the following methods:

String getText() void
setText(String s)

Here, s is the text to be associated with the button.

Concrete subclasses of AbstractButton generate action events when they are pressed. Listeners
register and unregister for these events via the methods shown here:

void addActionListener(ActionListener al)
void removeActionListener(ActionListener al)
Here, al is the action listener.

AbstractButton is a superclass for push buttons, check boxes, and radio buttons.
Each is examined next.

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an icon,a string,
or both to be associated with the push button. Some of its constructors are shown here:
JButton(Icon i)

JButton(String s)
JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

Check Boxes

The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which provides
support for two-state buttons. Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box is
initially selected. Otherwise, it is not.

The state of the check box can be changed via the following
method: void setSelected(boolean state)
Here, state is true if the check box should be checked.

The following example illustrates how to create an applet that displays four checkboxes
and a text field. When a check box is pressed, its text is displayed in the text field.

The content pane for the JApplet object is obtained, and a flow layout is assigned as itslayout
manager. Next, four check boxes are added to the content pane, and icons are assigned for the
normal, rollover, and selected states. The applet is then registered to receive item events. Finally,
a text field is added to the content pane.

When a check box is selected or deselected, an item event is generated. This is handled by
itemStateChanged(). Inside itemStateChanged(), the getItem() method gets the JCheckBox
object that generated the event. The getText() method gets the text for that check box and uses it
to set the text inside the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JCheckBoxDemo" width=400 height=50>
</applet>

*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {

JTextField jtf;
public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Create icons

ImageIcon normal = new ImageIcon("normal.gif");

ImageIcon rollover = new ImageIcon("rollover.gif");
ImageIcon selected = new ImageIcon("selected.gif"); //

Add check boxes to the content pane

JCheckBox cb = new JCheckBox("C", normal);
cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("C++",
normal); cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("Java", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("Perl", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

// Add text field to the content
pane jtf = new JTextField(15);
contentPane.add(jtf);

}

public void itemStateChanged(ItemEvent ie) {
JCheckBox cb = (JCheckBox)ie.getItem();
jtf.setText(cb.getText());

}

}
Here is the output:

Radio Buttons

Radio buttons are supported by the JRadioButton class, which is a concrete implementation of
AbstractButton. Its immediate superclass is JToggleButton, which provides support for two-
state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)
JRadioButton(Icon i, boolean state)
JRadioButton(String s)
JRadioButton(String s, boolean state)
JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the button
is initially selected. Otherwise, it is not.
Radio buttons must be configured into a group. Only one of the buttons in that
group can be selected at any time. For example, if a user presses a radio button that is

in a group, any previously selected button in that group is automatically deselected.

The ButtonGroup class is instantiated to create a button group. Its default constructor is invoked
for this purpose. Elements are then added to the button group via the following method:

void add(AbstractButton ab)
Here, ab is a reference to the button to be added to the group.

Radio button presses generate action events that are handled by actionPerformed().
The getActionCommand() method gets the text that is associated with a radio
button and uses it to set the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JRadioButtonDemo" width=300
height=50> </applet>

*/

public class JRadioButtonDemo extends JApplet
implements ActionListener {

JTextField tf;
public void init() {
// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Add radio buttons to content pane

JRadioButton b1 = new JRadioButton("A");
b1.addActionListener(this);
contentPane.add(b1);

JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this);
contentPane.add(b2);

JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);
contentPane.add(b3);

// Define a button group

ButtonGroup bg = new ButtonGroup();
bg.add(b1);

bg.add(b2);

bg.add(b3);
// Create a text field and add it

// to the content pane

tf = new JTextField(5);
contentPane.add(tf);
}

public void actionPerformed(ActionEvent ae)
{ tf.setText(ae.getActionCommand());

}

}

Output from this applet is shown here:

Combo Boxes

Swing provides a combo box (a combination of a text field and a drop-down list) through the
JComboBox class, which extends JComponent. A combo box normally displays one entry.
However, it can also display a drop-down list that allows a user to select a different entry. You

can also type your selection into the text field. Two of JComboBox’s constructors here:

JComboBox()
JComboBox(Vector v)

Here, v is a vector that initializes the combo box.
Items are added to the list of choices via the addItem() method, whose signature is
shown here:
void addItem(Object obj)

Here, obj is the object to be added to the combo box.

The following example contains a combo box and a label. The label displays an icon. The combo

box contains entries for ―France‖,. ―Germany‖,

When a country is selected, the label is updated to display the flag for that country.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JComboBoxDemo" width=300
height=100> </applet>

*/

public class JComboBoxDemo extends JApplet
implements ItemListener {

JLabel jl;

ImageIcon france, germany, italy, japan;
public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Create a combo box and add it

// to the panel

JComboBox jc = new JComboBox();
jc.addItem("France");
jc.addItem("Germany");
jc.addItem("Italy");
jc.addItem("Japan");
jc.addItemListener(this);
contentPane.add(jc);

// Create label

jl = new JLabel(new
ImageIcon("france.gif")); contentPane.add(jl);
}

public void itemStateChanged(ItemEvent ie) {
String s = (String)ie.getItem();

jl.setIcon(new ImageIcon(s + ".gif"));
}

}

Output from this applet is shown here:

Tabbed Panes

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has
a title. When a user selects a folder, its contents become visible. Only one of the folders may be
selected at a time. Tabbed panes are commonly used for setting configuration options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We
will use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the
tab. Typically, a JPanel or a subclass of it is added.

The general procedure to use a tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method
define the title of the tab and the component it contains.)
3. Repeat step 2 for each tab.
4. Add the tabbed pane to the content pane of the applet.

Scroll Panes

A scroll pane is a component that presents a rectangular area in which a componentmay be
viewed. Horizontal and/or vertical scroll bars may be provided if necessary.

Scroll panes are implemented in Swing by the JScrollPane class, which extendsJComponent.
Some of its constructors are shown here:

JScrollPane(Component comp) JScrollPane(int
vsb, int hsb) JScrollPane(Component comp, int
vsb, int hsb)

Here, comp is the component to be added to the scroll pane. vsb and hsb are intconstants that
define when vertical and horizontal scroll bars for this scroll pane areshown. These constants are
defined by the ScrollPaneConstants interface. Some

examples of these constants are described as follows:

Constant Description

HORIZONTAL_SCROLLBAR_ALWAYS Always provide horizontal scroll bar
HORIZONTAL_SCROLLBAR_AS_NEEDED Provide horizontal scroll bar, if needed
VERTICAL_SCROLLBAR_ALWAYS Always provide vertical scroll bar
VERTICAL_SCROLLBAR_AS_NEEDED Provide vertical scroll bar, if needed

Here are the steps that you should follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify
the component and the policies for vertical and horizontal scroll bars.)
3. Add the scroll pane to the content pane of the applet.

The following example illustrates a scroll pane. First, the content pane of the JApplet object is
obtained and a border layout is assigned as its layout manager. Next, a JPanel object is created
and four hundred buttons are added to it, arranged into twenty columns. The panel is then added
to a scroll pane, and the scroll pane is added to the content pane. This causes vertical and
horizontal scroll bars to appear. You can use the scroll bars to scroll the buttons into view.

import java.awt.*;
import javax.swing.*;
/*

<applet code="JScrollPaneDemo" width=300 height=250>
</applet>

*/

public class JScrollPaneDemo extends JApplet
{ public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());

// Add 400 buttons to a panel
JPanel jp = new JPanel();

jp.setLayout(new GridLayout(20, 20));
int b = 0;

for(int i = 0; i < 20; i++) {
for(int j = 0; j < 20; j++) {

jp.add(new JButton("Button " + b));
++b;
}

}
// Add panel to a scroll pane

int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;
JScrollPane jsp = new JScrollPane(jp, v, h);

// Add scroll pane to the content pane
contentPane.add(jsp, BorderLayout.CENTER);

}

}

Output from this applet is shown here:

Trees

A tree is a component that presents a hierarchical view of data. A user has the ability to expand
or collapse individual subtrees in this display. Trees are implemented in Swing by the JTree
class, which extends JComponent. Some of its constructors are shown here:

JTree(Hashtable ht)
JTree(Object obj[])
JTree(TreeNode tn)
JTree(Vector v)

The first form creates a tree in which each element of the hash table ht is a child node.

Each element of the array obj is a child node in the second form. The tree node tn is the root of
the tree in the third form. Finally, the last form uses the elements of vector v as child nodes.

A JTree object generates events when a node is expanded or collapsed. The
addTreeExpansionListener() and removeTreeExpansionListener() methods allow listeners
to register and unregister for these notifications. The signatures of these methods are shown here:
void addTreeExpansionListener(TreeExpansionListener tel)
void removeTreeExpansionListener(TreeExpansionListener tel)

Here, tel is the listener object.

The getPathForLocation() method is used to translate a mouse click on a specific point of the
tree to a tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a TreePath

object that encapsulates information about the tree node that was selected by the user.

Tables

A table is a component that displays rows and columns of data. You can drag the cursor on
column boundaries to resize columns. You can also drag a column to a new position. Tables are
implemented by the JTable class, which extends JComponent.

One of its constructors is shown here:
JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads
is a one-dimensional array with the column headings.
Here are the steps for using a table in an applet:

1. Create a JTable object.

2. Create a JScrollPane object. (The arguments to the constructor specify the
table and the policies for vertical and horizontal scroll bars.)
3. Add the table to the scroll pane.
4. Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. The content pane of the JApplet
object is obtained and a border layout is assigned as its layout manager.A one-dimensional array
of strings is created for the column headings. This table has three columns. A two-dimensional
array of strings is created for the table cells. You can see that each element in the array is an
array of three strings. These arrays are passed to the JTable constructor. The table is added to a
scroll pane and then the scroll pane is added to the content pane.

import java.awt.*;
import javax.swing.*;
/*

<applet code="JTableDemo" width=400
height=200> </applet>

*/

public class JTableDemo extends JApplet {

public void init() {
// Get content pane

Container contentPane = getContentPane();

// Set layout manager
contentPane.setLayout(new BorderLayout());

// Initialize column headings

final String[] colHeads = { "Name", "Phone", "Fax"
}; // Initialize data

final Object[][] data = {

{ "Gail", "4567", "8675" },
{ "Ken", "7566", "5555" },

{ "Viviane", "5634", "5887" },
{ "Melanie", "7345", "9222" },
{ "Anne", "1237", "3333" },

{ "John", "5656", "3144" },

{ "Matt", "5672", "2176" }, {

"Claire", "6741", "4244" }, {

"Erwin", "9023", "5159" }, {
"Ellen", "1134", "5332" },

{ "Jennifer", "5689", "1212" },

{ "Ed", "9030", "1313" },

{ "Helen", "6751", "1415"
} };

// Create the table

JTable table = new JTable(data,
colHeads); // Add table to a scroll pane

int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp = new JScrollPane(table, v, h);

// Add scroll pane to the content pane
contentPane.add(jsp, BorderLayout.CENTER);

}

}

Here is the output:

Event Handling is at the core of successful applet programming. Most events to which
your applet will respond are generated by the user. These events are passed to your applet in a
variety of ways, with the specific method depending upon the actual event. There are several

types of events. The most commonly handled events are those generated by the mouse, the
keyboard, and various controls, such as a push button. Events are supported by the
java.awt.event package

Events

In the delegation model, an event is an object that describes a state change in a source. It
can be generated as a consequence of a person interacting with the elements in a graphical user
interface. Some of the activities that cause events to be generated are pressing a button, entering
a character via the keyboard, selecting an item in a list, and clicking the mouse. Many other user
operations could also be cited as examples. Events may also occur that are not directly caused by
interactions with a user interface. For example, an event may be generated when a timer expires,
a counter exceeds a value, a software or hardware failure occurs, or an operation is completed.
You are free to define events that are appropriate for your application.

Event Sources

A source is an object that generates an event. This occurs when the internal state of that object
changes in some way. Sources may generate more than one type of event. A source must register
listeners in order for the listeners to receive notifications about a specific type of event. Each
type of event has its own registration method.

Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example, the
method that registers a keyboard event listener is called addKeyListener(). The method that
registers a mouse motion listener is called addMouseMotionListener(). When an event occurs,
all registered listeners are notified and receive a copy of the event object. This is known as
multicasting the event. In all cases, notifications are sent only to listeners that register to receive
them. Some sources may allow only one listener to register. The general form of such

a method is this:

public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

Here, Type is the name of the event and el is a reference to the event listener. When such an
event occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an
interest in a specific type of event.

The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example, to
remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates events. For
example, the Component class provides methods to add and remove keyboard and mouse event
listeners.

Event Classes

The classes that represent events are at the begin our study of event handling with a tour of the event classes.
As you will see, they provide a
consistent, easy-to-use means of encapsulating events.

At the root of the Java event class hierarchy is EventObject, which is in

java.util. It is the superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

EventObject contains two methods: getSource() and toString(). The getSource()

method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass ofEventObject. It is
the superclass (either directly or indirectly) of all AWT-based events used by the delegation
event model. Its getID() method can be used to determine the type of the event. The signature of

this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 22. At this point, it is
important to know only that all of the other classes discussed in this section are subclasses of
AWTEvent.

To summarize:

■ EventObject is a superclass of all events.

■ AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

The package java.awt.event defines several types of events that are generated by various user
interface elements. Table 20-1 enumerates the most important of these event classes and provides
a brief description of when they are generated. The most commonly used constructors and
methods in each class are described in the following sections.

Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements. First,
it must have been registered with one or more sources to receive notifications about specific
types of events. Second, it must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in
java.awt.event. For example, the MouseMotionListener interface defines two methods to
receive notifications when the mouse is dragged or moved. Any object may receive and process
one or both of these events if it provides an implementation of this interface.

The Delegation Event Model

The modern approach to handling events is based on the delegation event model, which defines
standard and consistent mechanisms to generate and process events. Its conceptis quite simple: a
source generates an event and sends it to one or more listeners. In thisscheme, the listener simply
waits until it receives an event. Once received, the listener processes the event and then returns.
The advantage of this design is that the applicationlogic that processes events is cleanly
separated from the user interface logic that generates those events. A user interface element is
able to ―delegate‖ to theaseparateprocessingpieceofcode. of an event
In the delegation event model, listeners must register with a source in order to receive an event
notification. This provides an important benefit: notifications are sent only to listeners that want
to receive them. This is a more efficient way to handle events than the design used by the old
Java 1.0 approach. Previously, an event was propagated up the containment hierarchy until it was
handled by a component. This required components to receive events that they did not process,
and it wasted valuable time. The delegation event model eliminates this overhead.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following
integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

MouseEvent is a subclass of InputEvent. Here is one of its constructors.
MouseEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when. The
modifiers argument indicates which modifiers were pressed when a mouse event occurred. The
coordinates of the mouse are passed in x and y. The click count is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform. Java
2, version 1.4 adds a second constructor which also allows the button that caused the event to be
specified.

The most commonly used methods in this class are getX() and getY(). These return the X and
Y coordinates of the mouse when the event occurred. Their forms are shown here:

int getX()
int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse.

It is shown here:
Point getPoint()

It returns a Point object that contains the X, Y coordinates in its integer members: x and y.
The translatePoint() method changes the location of the event. Its form is shown here:
void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event.
Its signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this
platform. Its form is shown here:
boolean isPopupTrigger()

Java 2, version 1.4 added the getButton() method, shown here.
int getButton()
It returns a value that represents the button that caused the event. The return value will be one of
these constants defined by MouseEvent.
NOBUTTON BUTTON1 BUTTON2 BUTTON3
The NOBUTTON value indicates that no button was pressed or released

HandlingKeyboardEvents

To handle keyboard events, you use the same general architecture as that shown in

the mouse event example in the preceding section. The difference, of course, is that you
will be implementing the KeyListener interface.

Before looking at an example, it is useful to review how key events are generated.

When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the
keyPressed() event handler. When the key is released, a KEY_RELEASED event is generated
and the keyReleased() handler is executed. If a character is generated by the keystroke, then a
KEY_TYPED event is sent and the keyTyped() handler is invoked. Thus, each time the user
presses a key, at least two and often three events are generated. If all you care about are actual
characters, then you can ignore the information passed by the key press and release events.
However, if your program needs to handle special keys, such as the arrow or function keys, then
it must watch for them through the keyPressed() handler.

There is one other requirement that your program must meet before it can process
keyboard events: it must request input focus. To do this, call requestFocus(), which is
defined by Component. If you don’t, then your keyboard events program. will n

//Demonstrate the keyevent handlers.
import java.awt.*;

import java.awt.event.*;
import java.applet.*;

/*

<appletcode="SimpleKey"width=300height=100>
</applet>

*/

public class SimpleKeyextendsApplet
implements KeyListener {
Stringmsg="";

int X = 10, Y = 20; // output
coordinates public void init() {
addKeyListener(this);
requestFocus();//requestinputfocus
}

public void keyPressed(KeyEventke)
{showStatus("KeyDown");

}

public void keyReleased(KeyEventke)
{showStatus("KeyUp");
}

public void keyTyped(KeyEventke)

{msg+= ke.getKeyChar();

repaint();

}

//Display keystrokes.

public void paint(Graphicsg)
{g.drawString(msg,X,Y);
}

}

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need to respond to
them within the keyPressed() handler. They are not available through keyTyped(). To identify
the keys, you use their virtual key codes. For example, the next applet outputs the name of a few
of the special keys:

Adapter Classes

Java provides a special feature, called an adapter class, that can simplify the creation of

event handlers in certain situations. An adapter class provides an empty implementation of all
methods in an event listener interface. Adapter classes are useful when you want to receive and
process only some of the events that are handled by a particular event listener interface. You can
define a new class to act as an event listener by extending one of the adapter classes and
implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(). The signatures of these empty methods are exactly as defined in the
MouseMotionListener interface. If you were interested in only mouse drag events, then you
could simply extend MouseMotionAdapter and implement mouseDragged(). The empty
implementation of mouseMoved() would handle the mouse motion events for you. Table 20-4
lists the commonly used adapter classes in java.awt.event and notes the interface that each
implements.

The following example demonstrates anadapter. It displays a message in the status bar of
an applet viewer or browser when the mouse is clicked or dragged. However, all other mouse
events are silently ignored. The program has three classes. AdapterDemo extends Applet. Its
init() method creates an instance of MyMouseAdapter and registers that object to receive
notifications of mouse events. It also creates an instance of MyMouseMotionAdapter and
registers that object to receive notifications of mouse motion events. Both of the constructors
take a reference to the applet as an argument. MyMouseAdapter implements the
mouseClicked() method. The other mouse events are silently ignored by code inherited from the
MouseAdapter class.

MyMouseMotionAdapter implements the mouseDragged() method. The other mouse
motionevent issilentlyignoredbycodeinherited fromtheMouseMotionAdapterclass.

AdapterClass ListenerInterface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter

MouseMotionListener

WindowAdapter WindowListener

Demonstrateanadapter.
import java.awt.*;
importjava.awt.event.*;
import java.applet.*;
/*

<applet code="AdapterDemo"width=300height=100>
</applet>

*/

publicclassAdapterDemoextendsApplet

{public void init(){

addMouseListener(new MyMouseAdapter(this));
addMouseMotionListener(newMyMouseMotionAdapter(this));

}

}

classMyMouseAdapterextendsMouseAdapter
{AdapterDemoadapterDemo;

publicMyMouseAdapter(AdapterDemoadapterDemo){ this.adapterDemo

= adapterDemo;

}

//Handle mouseclicked.

publicvoidmouseClicked(MouseEventme){
adapterDemo.showStatus("Mouse clicked");

}

}

classMyMouseMotionAdapterextendsMouseMotionAdapter{
AdapterDemo adapterDemo;

publicMyMouseMotionAdapter(AdapterDemoadapterDemo){
this.adapterDemo = adapterDemo;

}

//Handlemousedragged.

publicvoidmouseDragged(MouseEventme){
adapterDemo.showStatus("Mouse dragged");

}

}

