
Page | 1

 NOTES ON

 Computer Architecture
MCA I Year/ I Semester

(2023-24)

By

K.ANIL KUMAR
(ASSISTANT PROFESSOR)

DEPARTMENT OF

MCA
 RAMNATH GULJARILAL KEDIA COLLEGE OF COMMERCE

3-1-336, OPP NEW CHADERGHAT BRIDGE,

Kachiguda Station Road,

Esamia Bazar, Hyderabad 500 027, Telangana,India.

Computer Architecture

Computer Architecture:

Computer Architecture deals with giving operational attributes of the computer or

Processor to be specific. It deals with details like physical memory, ISA (Instruction Set

Architecture) of the processor, the number of bits used to represent the data types, Input

Output mechanism and technique for addressing memories.

Computer Organization:

Computer Organization is realization of what is specified by the computer architecture . It

deals with how operational attributes are linked together to meet the requirements specified by

computer architecture. Some organizational attributes are hardware details, control signals,

peripherals.

EXAMPLE:

Say you are in a company that manufactures cars, design and all low-level details of the

car come under computer architecture (abstract, programmers view), while making it’s

parts piece by piece and connecting together the different components of that car by

keeping the basicdesigninmindcomesundercomputerorganization(physicalandvisible).

Computer Organization Computer Architecture

 Page2

Computer Organization and Architecture

 Page 3

Often called microarchitecture (low level)
Computer architecture (a
bit higher level)

Transparent from programmer (ex. a programmer does
not worry much how addition is implemented in
hardware)

Programmer view (i.e.
Programmer has to be
aware of which instruction
set used)

Physical components (Circuit design, Adders, Signals,
Peripherals)

Logic (Instruction set,
Addressing modes, Data
types, Cache optimization)

How to do ? (implementation of the architecture)
What to do ? (Instruction
set)

GENERATIONS OF A COMPUTER

Generation in computer terminology is a change in technology a computer is/was being

used. Initially, the generation term was used to distinguish between varying hardware

technologies. But nowadays, generation includes both hardware and software, which

together make up an entire computer system.

There are totally five computer generations known till date. Each generation has been

discussed in detail along with their time period and characteristics. Here approximate dates

against each generations have been mentioned which are normally accepted.

Following are the main five generations of computers

S.N. Generation & Description

1
First Generation
The period of first generation: 1946-1959. Vacuum tube based.

2
Second Generation
The period of second generation: 1959-1965. Transistor based.

3
Third Generation
The period of third generation: 1965-1971. Integrated Circuit based.

4
Fourth Generation
The period of fourth generation: 1971-1980. VLSI microprocessor based.

5
Fifth Generation
The period of fifth generation: 1980-onwards. ULSI microprocessor based

First generation

https://www.tutorialspoint.com/computer_fundamentals/computer_first_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_second_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_third_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_fourth_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_fifth_generation.htm

Computer Organization and Architecture

 Page 4

The period of first generation was 1946-1959. The computers of first generation used

vacuum tubes as the basic components for memory and circuitry for CPU (Central Processing

Unit). These tubes, like electric bulbs, produced a lot of heat and were prone to frequent

fusing of the installations, therefore, were very expensive and could be afforded only by very

large organizations. In this generation mainly batch processing operating system were used.

Punched cards, paper tape, and magnetic tape were used as input and output devices. The

computers in this generation used machine code as programming language.

The main features of first generation are:

 Vacuum tube technology

 Unreliable

 Supported machine language only

 Very costly

 Generated lot of heat

 Slow input and output devices

 Huge size

 Need of A.C.

 Non-portable

 Consumed lot of electricity

Some computers of this generation were:

 ENIAC

 EDVAC

 UNIVAC

 IBM-701

 IBM-650

Computer Organization and Architecture

 Page 5

Second generation

The period of second generation was 1959-1965. In this generation transistors were used

that were cheaper, consumed less power, more compact in size, more reliable and faster

than the first generation machines made of vacuum tubes. In this generation, magnetic cores

were used as primary memory and magnetic tape and magnetic disks as secondary storage

devices. In this generation assembly language and high-level programming languages like

FORTRAN, COBOL were used. The computers used batch processing and multiprogramming

operating system.

The main features of second generation are:

 Use of transistors

 Reliable in comparison to first generation computers

 Smaller size as compared to first generation computers

 Generated less heat as compared to first generation computers

 Consumed less electricity as compared to first generation computers

 Faster than first generation computers

 Still very costly

 A.C. needed

 Supported machine and assembly languages

Some computers of this generation were:

 IBM 1620

 IBM 7094

 CDC 1604

 CDC 3600

 UNIVAC 1108

Third generation

Computer Organization and Architecture

 Page 6

The period of third generation was 1965-1971. The computers of third generation used

integrated circuits (IC's) in place of transistors. A single IC has many transistors, resistors

and capacitors along with the associated circuitry. The IC was invented by Jack Kilby. This

development made computers smaller in size, reliable and efficient. In this generation

remote processing, time-sharing, multi-programming operating system were used. High-

level languages (FORTRAN-II TO IV, COBOL, PASCAL PL/1, BASIC, ALGOL-68 etc.) were used

during this generation.

The main features of third generation are:

 IC used

 More reliable in comparison to previous two generations

 Smaller size

 Generated less heat

 Faster

 Lesser maintenance

 Still costly

 A.C needed

 Consumed lesser electricity

 Supported high-level language

Some computers of this generation were:

 IBM-360 series

 Honeywell-6000 series

 PDP(Personal Data Processor)

 IBM-370/168

 TDC-316

Fourth generation

Computer Organization and Architecture

 Page 7

The period of fourth generation was 1971-1980. The computers of fourth generation used

Very Large Scale Integrated (VLSI) circuits. VLSI circuits having about 5000 transistors and

other circuit elements and their associated circuits on a single chip made it possible to have

microcomputers of fourth generation. Fourth generation computers became more powerful,

compact, reliable, and affordable. As a result, it gave rise to personal computer (PC)

revolution. In this generation time sharing, real time, networks, distributed operating system

were used. All the high-level languages like C, C++, DBASE etc., were used in this generation.

The main features of fourth generation are:

 VLSI technology used

 Very cheap

 Portable and reliable

 Use of PC's

 Very small size

 Pipeline processing

 No A.C. needed

 Concept of internet was introduced

 Great developments in the fields of networks

 Computers became easily available

Some computers of this generation were:

 DEC 10

 STAR 1000

 PDP 11

 CRAY-1(Super Computer)

 CRAY-X-MP(Super Computer)

Fifth generation

Computer Organization and Architecture

 Page 8

The period of fifth generation is 1980-till date. In the fifth generation, the VLSI technology

became ULSI (Ultra Large Scale Integration) technology, resulting in the production of

microprocessor chips having ten million electronic components. This generation is based on

parallel processing hardware and AI (Artificial Intelligence) software. AI is an emerging

branch in computer science, which interprets means and method of making computers think

like human beings. All the high-level languages like C and C++, Java, .Net etc., are used in this

generation.

AI includes:

 Robotics

 Neural Networks

 Game Playing

 Development of expert systems to make decisions in real life situations.

 Natural language understanding and generation.

The main features of fifth generation are:

 ULSI technology

 Development of true artificial intelligence

 Development of Natural language processing

 Advancement in Parallel Processing

 Advancement in Superconductor technology

 More user friendly interfaces with multimedia features

 Availability of very powerful and compact computers at cheaper rates

Some computer types of this generation are:

 Desktop

 Laptop

 NoteBook

 UltraBook

Computer Organization and Architecture

 Page 9

 ChromeBook

COMPUTER TYPES

Classification based on Operating Principles

Based on the operating principles, computers can be classified into one of the following types:

-

1) Digital Computers

2) Analog Computers

3) Hybrid Computers

Digital Computers: - Operate essentially by counting. All quantities are expressed as

discrete or numbers. Digital computers are useful for evaluating arithmetic expressions and

manipulations of data (such as preparation of bills, ledgers, solution of simultaneous

equations etc).

Analog Computers:- An analog computer is a form of computer that uses the continuously

changeable aspects of physical phenomena such as electrical, mechanical, or

hydraulic quantities to model the problem being solved. In contrast, digital

computers represent varying quantities symbolically, as their numerical values change.

Hybrid Computers:- are computers that exhibit features of analog

computers and digital computers. The digital component normally serves as the controller

http://1.bp.blogspot.com/-M_vnZqUQ4S4/UETcRpuyqzI/AAAAAAAAAEs/0Q-DE47g3NE/s1600/digit.jpg
http://3.bp.blogspot.com/-rOnoGJwADSg/UETcOZu_O6I/AAAAAAAAAEc/pWWdY9FoSeo/s1600/analog.jpg
http://1.bp.blogspot.com/-M_vnZqUQ4S4/UETcRpuyqzI/AAAAAAAAAEs/0Q-DE47g3NE/s1600/digit.jpg
http://3.bp.blogspot.com/-rOnoGJwADSg/UETcOZu_O6I/AAAAAAAAAEc/pWWdY9FoSeo/s1600/analog.jpg

Computer Organization and Architecture

 Page 10

and provides logical operations, while the analog component normally serves as a solver

of differential equations.

Classification digital Computer based on size and Capability

Based on size and capability, computers are broadly classified into

Micro Computers(Personal Computer)

 A microcomputer is the smallest general purpose processing system. The older pc started 8

bit processor with speed of 3.7MB and current pc 64 bit processor with speed of 4.66 GB.

Examples: - IBM PCs, APPLE computers

Microcomputer can be classified into 2 types:

1. Desktops

2. Portables

The difference is portables can be used while travelling whereas desktops computers cannot

be carried around.

The different portable computers are: -

1) Laptop

2) Notebooks

3) Palmtop (hand held)

4) Wearable computers

Laptop: - this computer is similar to a desktop computers but the size is smaller. They are

expensive than desktop. The weight of laptop is around 3 to 5 kg.

http://3.bp.blogspot.com/-2eZNwZSEFRk/UETcTEp9YyI/AAAAAAAAAE0/N8Fpa3GTXRI/s1600/hybrid.jpg
http://1.bp.blogspot.com/-TmihW6kkVQ0/UETnNghd_dI/AAAAAAAAAFU/vVx1-Xnj9vY/s1600/1295977088_sony-VPCEB46FG-laptop.jpeg
http://3.bp.blogspot.com/-2eZNwZSEFRk/UETcTEp9YyI/AAAAAAAAAE0/N8Fpa3GTXRI/s1600/hybrid.jpg
http://1.bp.blogspot.com/-TmihW6kkVQ0/UETnNghd_dI/AAAAAAAAAFU/vVx1-Xnj9vY/s1600/1295977088_sony-VPCEB46FG-laptop.jpeg

Computer Organization and Architecture

 Page 11

Notebook: - These computers are as powerful as desktop but size of these computers are

comparatively smaller than laptop and desktop. They weigh 2 to 3 kg. They are more costly

than laptop.

Palmtop (Hand held): - They are also called as personal Digital Assistant (PDA). These

computers are small in size. They can be held in hands. It is capable of doing word processing,

spreadsheets and hand writing recognition, game playing, faxing and paging. These

computers are not as powerful as desktop computers. Ex: - 3com palmV.

Wearable computer: - The size of this computer is very small so that it can be worn on the

body. It has smaller processing power. It is used in the field of medicine. For example pace

maker to correct the heart beats. Insulin meter to find the levels of insulin in the blood.

Workstations:- It is used in large, high-resolution graphics screen built in network support,

Engineering applications(CAD/CAM), software development desktop publishing

http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg
http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg
http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg

Computer Organization and Architecture

 Page 12

Ex: Unix and windows NT.

b) Minicomputer: - A minicomputer is a medium-sized computer. That is more

powerful than a microcomputer. These computers are usually designed to serve multiple

users simultaneously (Parallel Processing). They are more expensive than microcomputers.

 Examples: Digital Alpha, Sun Ultra.

c) Mainframe (Enterprise) computers: - Computers with large storage capacities and

very high speed of processing (compared to mini- or microcomputers) are known as

mainframe computers. They support a large number of terminals for simultaneous use by a

number of users like ATM transactions. They are also used as central host computers in

distributed data processing system.

 Examples: - IBM 370, S/390.

d) Supercomputer: - Supercomputers have extremely large storage capacity and

computing speeds which are many times faster than other computers. A supercomputer is

measured in terms of tens of millions Instructions per second (mips), an operation is made up

of numerous instructions. The supercomputer is mainly used for large scale numerical

problems in scientific and engineering disciplines such as Weather analysis.

 Examples: - IBM Deep Blue

http://3.bp.blogspot.com/-39jMda8-9aE/UEToaMzCOoI/AAAAAAAAAF8/eWiiUC01mHI/s1600/MINI.jpg
http://2.bp.blogspot.com/-i6OEpb2zoJU/UEToZfnOeFI/AAAAAAAAAF0/ttG82MZDfVA/s1600/MAINFR.jpg
http://3.bp.blogspot.com/-39jMda8-9aE/UEToaMzCOoI/AAAAAAAAAF8/eWiiUC01mHI/s1600/MINI.jpg
http://2.bp.blogspot.com/-i6OEpb2zoJU/UEToZfnOeFI/AAAAAAAAAF0/ttG82MZDfVA/s1600/MAINFR.jpg

Computer Organization and Architecture

 Page 13

Classification based on number of microprocessors

Based on the number of microprocessors, computers can be classified into

a) Sequential computers and

b) Parallel computers

a) Sequential computers: - Any task complete in sequential computers is with one

microcomputer only. Most of the computers (today) we see are sequential computers where

in any task is completed sequentially instruction after instruction from the beginning to the

end.

b) Parallel computers: - The parallel computer is relatively fast. New types of computers

that use a large number of processors. The processors perform different tasks independently

and simultaneously thus improving the speed of execution of complex programs dramatically.

Parallel computers match the speed of supercomputers at a fraction of the cost.

Classification based on word-length

 A binary digit is called “BIT”. A word is a group of bits which is fixed for a computer.

The number of bits in a word (or word length) determines the representation of all characters

in these many bits. Word length leis in the range from 16-bit to 64-bitsf or most computers of

today.

http://2.bp.blogspot.com/--R936ZuzAHk/UETobp6m-UI/AAAAAAAAAGE/ldBY_CuvxeQ/s1600/SUPER.jpg

Computer Organization and Architecture

 Page 14

Classification based on number of users

Based on number of users, computers are classified into: -

Single User: - Only one user can use the resource at any time.

Multi User: - A single computer shared by a number of users at any time.

Network: - A number of interconnected autonomous computers shared by a number

of users at any time.

http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg
http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg
http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg

Computer Organization and Architecture

 Page 15

COMPUTER TYPES

A computer can be defined as a fast electronic calculating machine that accepts the

(data) digitized input information process it as per the list of internally stored instructions

and produces the resulting information. List of instructions are called programs & internal

storage is called computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools,

Business offices etc., It is the most common type of desk top computers with

processing and storage units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability,

but with same dimensions as that of desktop computer. These are used in engineering

applications of interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to large

corporations that require much more computing power and storage capacity than

work stations. Internet associated with servers have become a dominant worldwide

source of all types of information.

5. Super computers: - These are used for large scale numerical calculations required in

the applications like weather forecasting etc.,

http://1.bp.blogspot.com/-4cf0I1jq85E/UETqhcdtZwI/AAAAAAAAAGg/cHKv46tpo3c/s1600/NETWORK.jpg

Computer Organization and Architecture

 Page 16

BASIC TERMINOLOGY

 •Input: Whatever is put into a computer system.

 •Data: Refers to the symbols that represent facts, objects, or ideas.

 •Information: The results of the computer storing data as bits and bytes; the words, umbers,

sounds, and graphics.

 •Output: Consists of the processing results produced by a computer.

 •Processing: Manipulation of the data in many ways.

 •Memory: Area of the computer that temporarily holds data waiting to be processed, stored,

or output.

 •Storage: Area of the computer that holds data on a permanent basis when it is not

immediately needed for processing.

 •Assembly language program (ALP) –Programs are written using mnemonics

 •Mnemonic –Instruction will be in the form of English like form

 •Assembler –is a software which converts ALP to MLL (Machine Level Language)

 •HLL (High Level Language) –Programs are written using English like statements

 •Compiler -Convert HLL to MLL, does this job by reading source program at once

 •Interpreter –Converts HLL to MLL, does this job statement by statement

 •System software –Program routines which aid the user in the execution of programs eg:

Assemblers, Compilers

 •Operating system –Collection of routines responsible for controlling and coordinating all

the activities in a computer system

Computers has two kinds of components:

 Hardware, consisting of its physical devices (CPU, memory, bus, storage devices, ...)

 Software, consisting of the programs it has (Operating system, applications, utilities, ...)

FUNCTIONAL UNIT

A computer consists of five functionally independent main parts input, memory,

arithmetic logic unit (ALU), output and control unit.

Computer Organization and Architecture

 Page 17

Functional units of computer

Input device accepts the coded information as source program i.e. high level

language. This is either stored in the memory or immediately used by the processor to

perform the desired operations. The program stored in the memory determines the

processing steps. Basically the computer converts one source program to an object program.

i.e. into machine language.

Finally the results are sent to the outside world through output device. All of these

actions are coordinated by the control unit.

Input unit: -

Computer Organization and Architecture

 Page 18

The source program/high level language program/coded information/simply data is

fed to a computer through input devices keyboard is a most common type. Whenever a key is

pressed, one corresponding word or number is translated into its equivalent binary code

over a cable & fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -

Its function into store programs and data. It is basically to two types

1. Primary memory

2. Secondary memory

Word:

In computer architecture, a word is a unit of data of a defined bit length that can be addressed

and moved between storage and the computer processor. Usually, the defined bit length of a

word is equivalent to the width of the computer's data bus so that a word can be moved in a

single operation from storage to a processor register. For any computer architecture with an

eight-bit byte, the word will be some multiple of eight bits. In IBM's evolutionary

System/360 architecture, a word is 32 bits, or four contiguous eight-bit bytes. In Intel's PC

processor architecture, a word is 16 bits, or two contiguous eight-bit bytes. A word can

contain a computer instruction, a storage address, or application data that is to be

manipulated (for example, added to the data in another word space).

The number of bits in each word is known as word length. Word length refers to the

number of bits processed by the CPU in one go. With modern general purpose computers,

word size can be 16 bits to 64 bits.

The time required to access one word is called the memory access time. The small, fast,

RAM units are called caches. They are tightly coupled with the processor and are often

contained on the same IC chip to achieve high performance.

http://searchstorage.techtarget.com/definition/storage
http://searchcio-midmarket.techtarget.com/definition/processor
http://whatis.techtarget.com/definition/register
http://searchstorage.techtarget.com/definition/byte
http://searchcio-midmarket.techtarget.com/definition/instruction

Computer Organization and Architecture

 Page 19

1. Primary memory: - Is the one exclusively associated with the processor and operates at

the electronics speeds programs must be stored in this memory while they are being

executed. The memory contains a large number of semiconductors storage cells. Each

capable of storing one bit of information. These are processed in a group of fixed site called

word.

To provide easy access to a word in memory, a distinct address is associated with

each word location. Addresses are numbers that identify memory location.

Number of bits in each word is called word length of the computer. Programs must

reside in the memory during execution. Instructions and data can be written into the

memory or read out under the control of processor. Memory in which any location can be

reached in a short and fixed amount of time after specifying its address is called random-

access memory (RAM).

The time required to access one word in called memory access time. Memory which is

only readable by the user and contents of which can’t be altered is called read only memory

(ROM) it contains operating system.

Computer Organization and Architecture

 Page 20

Caches are the small fast RAM units, which are coupled with the processor and are

often contained on the same IC chip to achieve high performance. Although primary storage

is essential it tends to be expensive.

2 Secondary memory: - Is used where large amounts of data & programs have to be stored,

particularly information that is accessed infrequently.

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition,

subtraction, division, multiplication, etc. the operands are brought into the ALU from

memory and stored in high speed storage elements called register. Then according to the

instructions the operation is performed in the required sequence.

The control and the ALU are may times faster than other devices connected to a

computer system. This enables a single processor to control a number of external devices

such as key boards, displays, magnetic and optical disks, sensors and other mechanical

controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the

processed results to the outside world.

Examples:- Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their

states. The actual timing signals that govern the transfer of data between input unit,

processor, memory and output unit are generated by the control unit.

BASIC OPERATIONAL CONCEPTS

Computer Organization and Architecture

 Page 21

To perform a given task an appropriate program consisting of a list of instructions is stored

in the memory. Individual instructions are brought from the memory into the processor,

which executes the specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register R0

& places the sum into register. This instruction requires the performance of several steps,

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched and added to the contents of R0

3. Finally the resulting sum is stored in the register R0

The preceding add instruction combines a memory access operation with an ALU

Operations. In some other type of computers, these two types of operations are performed by

separate instructions for performance reasons.

Load LOCA, R1

Add R1, R0

Transfers between the memory and the processor are started by sending the address

of the memory location to be accessed to the memory unit and issuing the appropriate control

signals. The data are then transferred to or from the memory.

The fig shows how memory &

Computer Organization and Architecture

 Page 22

the processor can be connected. In addition to the ALU & the control circuitry, the processor

contains a number of registers used for several different purposes.

Register:

It is a special, high-speed storage area within the CPU. All data must be represented in

a register before it can be processed. For example, if two numbers are to be multiplied, both

numbers must be in registers, and the result is also placed in a register. (The register can

contain the address of a memory location where data is stored rather than the actual data

itself.)

The number of registers that a CPU has and the size of each (number of bits) help

determine the power and speed of a CPU. For example a 32-bit CPU is one in which each

register is 32 bits wide. Therefore, each CPU instruction can manipulate 32 bits of

data. In high-level languages, the compiler is responsible for translating high-level operations

into low-level operations that access registers.

Instruction Format:

Computer instructions are the basic components of a machine language program. They are

also known as macro operations, since each one is comprised of sequences of micro

operations.

Each instruction initiates a sequence of micro operations that fetch operands from registers

or memory, possibly perform arithmetic, logic, or shift operations, and store results in

registers or memory.

Computer Organization and Architecture

 Page 23

Instructions are encoded as binary instruction codes. Each instruction code contains of

a operation code, or opcode, which designates the overall purpose of the instruction (e.g. add,

subtract, move, input, etc.). The number of bits allocated for the opcode determined how

many different instructions the architecture supports.

In addition to the opcode, many instructions also contain one or more operands, which

indicate where in registers or memory the data required for the operation is located. For

example, and add instruction requires two operands, and a not instruction requires one.

 15 12 11 6 5 0

 +-----------------------------------+

 | Opcode | Operand | Operand |

 +-----------------------------------+

The opcode and operands are most often encoded as unsigned binary numbers in order to

minimize the number of bits used to store them. For example, a 4-bit opcode encoded as a

binary number could represent up to 16 different operations.

The control unit is responsible for decoding the opcode and operand bits in the instruction

register, and then generating the control signals necessary to drive all other hardware in the

CPU to perform the sequence of micro operations that comprise the instruction.

INSTRUCTION CYCLE:

Computer Organization and Architecture

 Page 24

The instruction register (IR):- Holds the instructions that are currently being executed. Its

output is available for the control circuits which generates the timing signals that control the

various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It

contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers R0 through Rn-1.

The other two registers which facilitate communication with memory are: -

1. MAR – (Memory Address Register):- It holds the address of the location to be

accessed.

2. MDR – (Memory Data Register):- It contains the data to be written into or read out

of the address location.

Operating steps are

1. Programs reside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction of

the program.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the

memory.

Computer Organization and Architecture

 Page 25

4. After the time required to access the memory elapses, the address word is read out of

the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be

decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the

required operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiating a

read cycle.

8. When the operand has been read from the memory to the MDR, it is transferred from

MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the desired operation.

10. If the result of this operation is to be stored in the memory, the result is sent to MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is

initiated.

12. The contents of PC are incremented so that PC points to the next instruction that is to

be executed.

Normal execution of a program may be preempted (temporarily interrupted) if some

devices require urgent servicing, to do this one device raises an Interrupt signal. An interrupt

is a request signal from an I/O device for service by the processor. The processor provides

the requested service by executing an appropriate interrupt service routine.

The Diversion may change the internal stage of the processor its state must be saved

in the memory location before interruption. When the interrupt-routine service is completed

the state of the processor is restored so that the interrupted program may continue

THE VON NEUMANN ARCHITECTURE

The task of entering and altering programs for the ENIAC was extremely tedious. The

programming process can be easy if the program could be represented in a form suitable for

storing in memory alongside the data. Then, a computer could get its instructions by reading

them from memory, and a program could be set or altered by setting the values of a portion of

memory. This idea is known a the stored-program concept. The first publication of the idea

Computer Organization and Architecture

 Page 26

was in a 1945 proposal by von Neumann for a new computer, the EDVAC (Electronic Discrete

Variable Computer).

In 1946, von Neumann and his colleagues began the design of a new stored-program

computer, referred to as the IAS computer, at the Princeton Institute for Advanced Studies.

The IAS computer, although not completed until 1952, is the prototype of all subsequent

general-purpose computers.

It consists of

 A main memory, which stores both data and instruction

 An arithmetic and logic unit (ALU) capable of operating on binary data

 A control unit, which interprets the instructions in memory and causes them to be

executed

 Input and output (I/O) equipment operated by the control unit

BUS STRUCTURES:

Bus structure and multiple bus structures are types of bus or computing. A bus is basically a

subsystem which transfers data between the components of Computer components either

within a computer or between two computers. It connects peripheral devices at the same

time.

Computer Organization and Architecture

 Page 27

- A multiple Bus Structure has multiple inter connected service integration buses and for each

bus the other buses are its foreign buses. A Single bus structure is very simple and consists of

a single server.

- A bus cannot span multiple cells. And each cell can have more than one buses. - Published

messages are printed on it. There is no messaging engine on Single bus structure

I) In single bus structure all units are connected in the same bus than connecting different

buses as multiple bus structure.

II) Multiple bus structure's performance is better than single bus structure. Iii)single bus

structure's cost is cheap than multiple bus structure.

Group of lines that serve as connecting path for several devices is called a bus (one bit per

line).

Individual parts must communicate over a communication line or path for exchanging

data, address and control information as shown in the diagram below. Printer example –

processor to printer. A common approach is to use the concept of buffer registers to hold the

content during the transfer.

Buffer registers hold the data during the data transfer temporarily. Ex: printing

Types of Buses:

1. Data Bus:

Data bus is the most common type of bus. It is used to transfer data between different

components of computer. The number of lines in data bus affects the speed of data transfer

between different components. The data bus consists of 8, 16, 32, or 64 lines. A 64-line data

bus can transfer 64 bits of data at one time.

Computer Organization and Architecture

 Page 28

The data bus lines are bi-directional. It means that:

CPU can read data from memory using these lines CPU can write data to memory locations

using these lines

2. Address Bus:

Many components are connected to one another through buses. Each component is assigned a

unique ID. This ID is called the address of that component. It a component wants to

communicate with another component, it uses address bus to specify the address of that

component. The address bus is a unidirectional bus. It can carry information only in one

direction. It carries address of memory location from microprocessor to the main memory.

3. Control Bus:

Control bus is used to transmit different commands or control signals from one component to

another component. Suppose CPU wants to read data from main memory. It will use control is

also used to transmit control signals like ASKS (Acknowledgement signals). A control signal

contains the following:

1 Timing information: It specifies the time for which a device can use data and address bus.

2 Command Signal: It specifies the type of operation to be performed.

Suppose that CPU gives a command to the main memory to write data. The memory sends

acknowledgement signal to CPU after writing the data successfully. CPU receives the signal

and then moves to perform some other action.

SOFTWARE

If a user wants to enter and run an application program, he/she needs a System Software.

System Software is a collection of programs that are executed as needed to perform functions

such as:

• Receiving and interpreting user commands

• Entering and editing application programs and storing then as files in secondary storage

devices

• Running standard application programs such as word processors, spread sheets, games

etc…

Operating system - is key system software component which helps the user to exploit the

below underlying hardware with the programs.

Computer Organization and Architecture

 Page 29

Types of software

A layer structure showing where Operating System is located on generally used software

systems on desktops

System software

System software helps run the computer hardware and computer system. It includes a

combination of the following:

 device drivers

 operating systems

 servers

 utilities

 windowing systems

 compilers

 debuggers

 interpreters

 linkers

The purpose of systems software is to unburden the applications programmer from the often

complex details of the particular computer being used, including such accessories as

communications devices, printers, device readers, displays and keyboards, and also to

partition the computer's resources such as memory and processor time in a safe and stable

manner. Examples are- Windows XP, Linux and Mac.

Application software

Application software allows end users to accomplish one or more specific (not directly

computer development related) tasks. Typical applications include:

onal software

Computer Organization and Architecture

 Page 30

Application software exists for and has impacted a wide variety of topics.

PERFORMANCE

The most important measure of the performance of a computer is how quickly it can

execute programs. The speed with which a computer executes program is affected by the

design of its hardware. For best performance, it is necessary to design the compiles, the

machine instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the

performance of the entire computer system. It is affected by the speed of the processor, the

disk and the printer. The time needed to execute a instruction is called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a

computer system, the processor time depends on the hardware involved in the execution of

individual machine instructions. This hardware comprises the processor and the memory

which are usually connected by the bus as shown in the fig c.

The pertinent parts of the fig. c are repeated in fig. d which includes the cache

memory as part of the processor unit.

Computer Organization and Architecture

 Page 31

Let us examine the flow of program instructions and data between the memory and

the processor. At the start of execution, all program instructions and the required data are

stored in the main memory. As the execution proceeds, instructions are fetched one by one

over the bus into the processor, and a copy is placed in the cache later if the same instruction

or data item is needed a second time, it is read directly from the cache.

The processor and relatively small cache memory can be fabricated on a single IC

chip. The internal speed of performing the basic steps of instruction processing on chip is

very high and is considerably faster than the speed at which the instruction and data can be

fetched from the main memory. A program will be executed faster if the movement of

instructions and data between the main memory and the processor is minimized, which is

achieved by using the cache.

For example:- Suppose a number of instructions are executed repeatedly over a short period

of time as happens in a program loop. If these instructions are available in the cache, they can

be fetched quickly during the period of repeated use. The same applies to the data that are

used repeatedly.

Processor clock: -

Processor circuits are controlled by a timing signal called clock. The clock designer

the regular time intervals called clock cycles. To execute a machine instruction the processor

divides the action to be performed into a sequence of basic steps that each step can be

completed in one clock cycle. The length P of one clock cycle is an important parameter that

affects the processor performance.

Processor used in today’s personal computer and work station have a clock rates that

range from a few hundred million to over a billion cycles per second.

Basic performance equation

We now focus our attention on the processor time component of the total elapsed

time. Let ‘T’ be the processor time required to execute a program that has been prepared in

some high-level language. The compiler generates a machine language object program that

Computer Organization and Architecture

 Page 32

corresponds to the source program. Assume that complete execution of the program requires

the execution of N machine cycle language instructions. The number N is the actual number

of instruction execution and is not necessarily equal to the number of machine cycle

instructions in the object program. Some instruction may be executed more than once, which

in the case for instructions inside a program loop others may not be executed all, depending

on the input data used.

Suppose that the average number of basic steps needed to execute one machine cycle

instruction is S, where each basic step is completed in one clock cycle. If clock rate is ‘R’

cycles per second, the program execution time is given by

T=N*S/R

this is often referred to as the basic performance equation.

We must emphasize that N, S & R are not independent parameters changing one may

affect another. Introducing a new feature in the design of a processor will lead to improved

performance only if the overall result is to reduce the value of T.

Pipelining and super scalar operation: -

We assume that instructions are executed one after the other. Hence the value of S is

the total number of basic steps, or clock cycles, required to execute one instruction. A

substantial improvement in performance can be achieved by overlapping the execution of

successive instructions using a technique called pipelining.

Consider Add R1 R2 R3

This adds the contents of R1 & R2 and places the sum into R3.

The contents of R1 & R2 are first transferred to the inputs of ALU. After the addition

operation is performed, the sum is transferred to R3. The processor can read the next

instruction from the memory, while the addition operation is being performed. Then of that

instruction also uses, the ALU, its operand can be transferred to the ALU inputs at the same

time that the add instructions is being transferred to R3.

In the ideal case if all instructions are overlapped to the maximum degree possible

the execution proceeds at the rate of one instruction completed in each clock cycle.

Computer Organization and Architecture

 Page 33

Individual instructions still require several clock cycles to complete. But for the purpose of

computing T, effective value of S is 1.

A higher degree of concurrency can be achieved if multiple instructions pipelines are

implemented in the processor. This means that multiple functional units are used creating

parallel paths through which different instructions can be executed in parallel with such an

arrangement, it becomes possible to start the execution of several instructions in every clock

cycle. This mode of operation is called superscalar execution. If it can be sustained for a long

time during program execution the effective value of S can be reduced to less than one. But

the parallel execution must preserve logical correctness of programs that is the results

produced must be same as those produced by the serial execution of program instructions.

Now days many processors are designed in this manner.

Clock rate

These are two possibilities for increasing the clock rate ‘R’.

1. Improving the IC technology makes logical circuit faster, which reduces the time of

execution of basic steps. This allows the clock period P, to be reduced and the clock

rate R to be increased.

2. Reducing the amount of processing done in one basic step also makes it possible to

reduce the clock period P. however if the actions that have to be performed by an

instructions remain the same, the number of basic steps needed may increase.

Increase in the value ‘R’ that are entirely caused by improvements in IC technology

affects all aspects of the processor’s operation equally with the exception of the time it takes

to access the main memory. In the presence of cache the percentage of accesses to the main

memory is small. Hence much of the performance gain excepted from the use of faster

technology can be realized.

Instruction set CISC & RISC:-

Simple instructions require a small number of basic steps to execute. Complex

instructions involve a large number of steps. For a processor that has only simple instruction

a large number of instructions may be needed to perform a given programming task. This

could lead to a large value of ‘N’ and a small value of ‘S’ on the other hand if individual

instructions perform more complex operations, a fewer instructions will be needed, leading

Computer Organization and Architecture

 Page 34

to a lower value of N and a larger value of S. It is not obvious if one choice is better than the

other.

But complex instructions combined with pipelining (effective value of S ¿ 1) would

achieve one best performance. However, it is much easier to implement efficient pipelining in

processors with simple instruction sets.

RISC and CISC are computing systems developed for computers. Instruction set or

instruction set architecture is the structure of the computer that provides commands to the

computer to guide the computer for processing data manipulation. Instruction set consists of

instructions, addressing modes, native data types, registers, interrupt, exception handling and

memory architecture. Instruction set can be emulated in software by using an interpreter or

built into hardware of the processor. Instruction Set Architecture can be considered as a

boundary between the software and hardware. Classification of microcontrollers and

microprocessors can be done based on the RISC and CISC instruction set architecture.

Comparison between RISC and CISC:

RISC CISC

Acronym
It stands for ‘Reduced
Instruction Set Computer’.

It stands for ‘Complex
Instruction Set Computer’.

Definition
The RISC processors have a
smaller set of instructions with
few addressing nodes.

The CISC processors have a
larger set of instructions with
many addressing nodes.

Memory unit
It has no memory unit and uses
a separate hardware to
implement instructions.

It has a memory unit to
implement complex
instructions.

Program
It has a hard-wired unit of
programming.

It has a micro-programming
unit.

Design It is a complex complier design. It is an easy complier design.

Calculations
The calculations are faster and
precise.

The calculations are slow and
precise.

Decoding
Decoding of instructions is
simple.

Decoding of instructions is
complex.

Time Execution time is very less. Execution time is very high.

External It does not require external It requires external memory

https://www.elprocus.com/microcontrollers-types-and-applications/

Computer Organization and Architecture

 Page 35

memory memory for calculations. for calculations.

Pipelining
Pipelining does function
correctly.

Pipelining does not function
correctly.

Stalling
Stalling is mostly reduced in
processors.

The processors often stall.

Code expansion
Code expansion can be a
problem.

Code expansion is not a
problem.

Disc space The space is saved. The space is wasted.

Applications

Used in high end applications
such as video processing,
telecommunications and image
processing.

Used in low end applications
such as security systems, home
automations, etc.

Computer Organization and Architecture

 Page 36

1.8 Performance measurements

The performance measure is the time taken by the computer to execute a given bench

mark. Initially some attempts were made to create artificial programs that could be used as

bench mark programs. But synthetic programs do not properly predict the performance

obtained when real application programs are run.

A non-profit organization called SPEC- system performance Evaluation Corporation

selects and publishes bench marks.

The program selected range from game playing, compiler, and data base applications

to numerically intensive programs in astrophysics and quantum chemistry. In each case, the

program is compiled under test, and the running time on a real computer is measured. The

same program is also compiled and run on one computer selected as reference.

The ‘SPEC’ rating is computed as follows.

SPEC rating = Running time on the reference computer/ Running time on the computer under

test

MULTIPROCESSORS AND MULTICOMPUTER

Computer Organization and Architecture

 Page 37

multicomputer multiprocessors

1. A computer made up of several computers.

2. Distributed computing deals with hardware

and software systems containing more than

one processing element, multiple programs

 3. It can run faster

 4. A multi-computer is multiple computers,

each of which can have multiple processors.

5. Used for true parallel processing.

6. Processor can not share the memory.

7. Called as message passing multi computers

8. Cost is more

1. A computer that has more than one CPU on

its motherboard.

2. Multiprocessing is the use of two or more

central processing units (CPUs) within a

single computer system.

 3. Speed depends on the all processors speed

 4. Single Computer with multiple processors

5. Used for true parallel processing.

6. Processors can share the memory.

7. Called as shared memory multi processors

8. Cost is low

Data Representation:

Computer Organization and Architecture

 Page 38

Registers are made up of flip-flops and flip-flops are two-state devices that can store only 1’s

and 0’s.

There are many methods or techniques which can be used to convert numbers from one

base to another. We'll demonstrate here the following −

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method − Binary to Octal

 Shortcut method − Octal to Binary

 Shortcut method − Binary to Hexadecimal

 Shortcut method − Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 − Divide the decimal number to be converted by the value of the new base.

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit)

of new base number.

 Step 3 − Divide the quotient of the previous divide by the new base.

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new

base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero

in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base

number.

Example −

Decimal Number: 2910

Calculating Binary Equivalent −

Computer Organization and Architecture

 Page 39

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so

that the first remainder becomes the Least Significant Digit (LSD) and the last remainder

becomes the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

Steps

 Step 1 − Determine the column (positional) value of each digit (this depends on the

position of the digit and the base of the number system).

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the

corresponding columns.

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in

decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent −

Binary Number − 111012 = Decimal Number − 2910

Other Base System to Non-Decimal System

Steps

Step Binary Number Decimal Number

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Computer Organization and Architecture

 Page 40

 Step 1 − Convert the original number to a decimal number (base 10).

 Step 2 − Convert the decimal number so obtained to the new base number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 × 81) + (5 × 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Decimal Number − 2110 = Binary Number − 101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Octal

Steps

 Step 1 − Divide the binary digits into groups of three (starting from the right).

 Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent −

Computer Organization and Architecture

 Page 41

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be

treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary

number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 − Divide the binary digits into groups of four (starting from the right).

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent −

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Computer Organization and Architecture

 Page 42

Step 2 101012 110 510

Step 3 101012 1516

Binary Number − 101012 = Hexadecimal Number − 1516

Shortcut method - Hexadecimal to Binary

Steps

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal

digits may be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary

number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent −

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

Step 2 1516 00012 01012

Step 3 1516 000101012

Hexadecimal Number − 1516 = Binary Number − 101012

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to

express each of the decimal digits with a binary code. In the BCD, with four bits we can

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used

(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

Computer Organization and Architecture

 Page 43

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD

is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But

this is not enough for communication between two computers because there we need many

more symbols for communication. These symbols are required to represent 26 alphabets

with capital and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic

characters. Mostly such codes also represent other characters such as symbol and various

instructions necessary for conveying information. An alphanumeric code should at least

represent 10 digits and 26 letters of alphabet i.e. total 36 items. The following three

alphanumeric codes are very commonly used for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly

used worldwide while EBCDIC is used primarily in large IBM computers.

Complement Arithmetic

Complements are used in the digital computers in order to simplify the subtraction

operation and for the logical manipulations. For each radix-r system (radix r represents base

of number system) there are two types of complements.

S.N. Complement Description

1 Radix Complement The radix complement is referred to as the r's

complement

2 Diminished Radix Complement The diminished radix complement is referred

Computer Organization and Architecture

 Page 44

to as the (r-1)'s complement

Binary system complements

As the binary system has base r = 2. So the two types of complements for the binary system

are 2's complement and 1's complement.

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is

called as taking complement or 1's complement. Example of 1's Complement is as follows.

2's complement

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit

(LSB) of 1's complement of the number.

2's complement = 1's complement + 1

Example of 2's Complement is as follows.

Binary Arithmetic

Binary arithmetic is essential part of all the digital computers and many other digital system.

Computer Organization and Architecture

 Page 45

Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of binary

addition.

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given

column and a carry of 1 over to the next column.

Example − Addition

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary

subtraction. There are four rules of binary subtraction.

Example − Subtraction

Binary Multiplication

Computer Organization and Architecture

 Page 46

Binary multiplication is similar to decimal multiplication. It is simpler than decimal

multiplication because only 0s and 1s are involved. There are four rules of binary

multiplication.

Example − Multiplication

Binary Division

Binary division is similar to decimal division. It is called as the long division procedure.

Example − Division

Subtraction by 1’s Complement

In subtraction by 1’s complement we subtract two binary numbers using carried by 1’s

complement.

Computer Organization and Architecture

 Page 47

The steps to be followed in subtraction by 1’s complement are:

i) To write down 1’s complement of the subtrahend.

ii) To add this with the minuend.

iii) If the result of addition has a carry over then it is dropped and an 1 is added in the last bit.

iv) If there is no carry over, then 1’s complement of the result of addition is obtained to get the

final result and it is negative.

Evaluate:

(i) 110101 – 100101

Solution:

1’s complement of 10011 is 011010. Hence

 Minued - 1 1 0 1 0 1

 1’s complement of subtrahend - 0 1 1 0 1 0

 Carry over - 1 0 0 1 1 1 1

 1

 0 1 0 0 0 0

The required difference is 10000

(ii) 101011 – 111001

Solution:

1’s complement of 111001 is 000110. Hence

 Minued - 1 0 1 0 1 1

 1’s complement - 0 0 0 1 1 0

 1 1 0 0 0 1

Hence the difference is – 1 1 1 0

(iii) 1011.001 – 110.10

Solution:

1’s complement of 0110.100 is 1001.011 Hence

 Minued - 1 0 1 1 . 0 0 1

 1’s complement of subtrahend - 1 0 0 1 . 0 1 1

 Carry over - 1 0 1 0 0 . 1 0 0

Computer Organization and Architecture

 Page 48

 1

 0 1 0 0 . 1 0 1

Hence the required difference is 100.101

(iv) 10110.01 – 11010.10

Solution:

1’s complement of 11010.10 is 00101.01

 1 0 1 1 0 . 0 1

 0 0 1 0 1 . 0 1

 1 1 0 1 1 . 1 0

Hence the required difference is – 00100.01 i.e. – 100.01

Subtraction by 2’s Complement

With the help of subtraction by 2’s complement method we can easily subtract two binary

numbers.

The operation is carried out by means of the following steps:

(i) At first, 2’s complement of the subtrahend is found.

(ii) Then it is added to the minuend.

(iii) If the final carry over of the sum is 1, it is dropped and the result is positive.

(iv) If there is no carry over, the two’s complement of the sum will be the result and it is

negative.

The following examples on subtraction by 2’s complement will make the

procedure clear:

Evaluate:

(i) 110110 - 10110

Solution:

The numbers of bits in the subtrahend is 5 while that of minuend is 6. We make the number of

bits in the subtrahend equal to that of minuend by taking a `0’ in the sixth place of the

subtrahend.

Now, 2’s complement of 010110 is (101101 + 1) i.e.101010. Adding this with the minuend.

 1 1 0 1 1 0 Minuend

 1 0 1 0 1 0 2’s complement of subtrahend

Computer Organization and Architecture

 Page 49

 Carry over 1 1 0 0 0 0 0 Result of addition

After dropping the carry over we get the result of subtraction to be 100000.

(ii) 10110 – 11010

Solution:

2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence

 Minued - 1 0 1 1 0

 2’s complement of subtrahend - 0 0 1 1 0

 Result of addition - 1 1 1 0 0

As there is no carry over, the result of subtraction is negative and is obtained by writing the 2’s

complement of 11100 i.e.(00011 + 1) or 00100.

Hence the difference is – 100.

(iii) 1010.11 – 1001.01

Solution:

2’s complement of 1001.01 is 0110.11. Hence

 Minued - 1 0 1 0 . 1 1

2’s complement of subtrahend - 0 1 1 0 . 1 1

 Carry over 1 0 0 0 1 . 1 0

After dropping the carry over we get the result of subtraction as 1.10.

(iv) 10100.01 – 11011.10

Solution:

2’s complement of 11011.10 is 00100.10. Hence

 Minued - 1 0 1 0 0 . 0 1

 2’s complement of subtrahend - 0 1 1 0 0 . 1 0

 Result of addition - 1 1 0 0 0 . 1 1

As there is no carry over the result of subtraction is negative and is obtained by writing the 2’s

complement of 11000.11.

Hence the required result is – 00111.01.

Computer Organization and Architecture

 Page 50

Error Detection & Correction

What is Error?

Error is a condition when the output information does not match with the input information.

During transmission, digital signals suffer from noise that can introduce errors in the binary

bits travelling from one system to other. That means a 0 bit may change to 1 or a 1 bit may

change to 0.

Error-Detecting codes

Whenever a message is transmitted, it may get scrambled by noise or data may get

corrupted. To avoid this, we use error-detecting codes which are additional data added to a

given digital message to help us detect if an error occurred during transmission of the

message. A simple example of error-detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to figure out the original

message from the corrupt message that we received. This type of code is called an error-

correcting code. Error-correcting codes also deploy the same strategy as error-detecting

codes but additionally, such codes also detect the exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect errors along with a

sophisticated mechanism to determine the corrupt bit location. Once the corrupt bit is

located, its value is reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the data bits at the time of

transmission.

 The additional bits are called parity bits. They allow detection or correction of the

errors.

 The data bits along with the parity bits form a code word.

Computer Organization and Architecture

 Page 51

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The MSB of an 8-bits word is

used as the parity bit and the remaining 7 bits are used as data or message bits. The parity of

8-bits transmitted word can be either even parity or odd parity.

Even parity -- Even parity means the number of 1's in the given word including the parity

bit should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1's in the given word including the parity bit

should be odd (1,3,5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the parity required.

 For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is

even. Shown in fig. (a).

 For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is

odd. Shown in fig. (b).

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error if the parity of the receiver

signal is different from the expected parity. That means, if it is known that the parity of the

transmitted signal is always going to be "even" and if the received signal has an odd parity,

then the receiver can conclude that the received signal is not correct. If an error is detected,

Computer Organization and Architecture

 Page 52

then the receiver will ignore the received byte and request for retransmission of the same

byte to the transmitter.

Computer Organization and Architecture

 Page 53

UNIT – II (12 Lectures)

BASIC COMPUTER ORGANIZATION AND DESIGN: Instruction codes, computer

registers, computer instructions, instruction cycle, timing and control,

memory‐reference instructions, input‐output and interrupt.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-5 Pages: 123-157

Central processing unit: stack organization, instruction formats, addressing modes,

data transfer and manipulation, program control, reduced instruction set computer

(RISC).

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-8 Pages: 241-297

Instruction Codes

Computer instructions are the basic components of a machine language program. They

are also known as macro operations, since each one is comprised of sequences of

micro operations. Each instruction initiates a sequence of micro operations that fetch

operands from registers or memory, possibly perform arithmetic, logic, or shift

operations, and store results in registers or memory.

Instructions are encoded as binary instruction codes. Each instruction code

contains of a operation code, or opcode, which designates the overall purpose of the

instruction (e.g. add, subtract, move, input, etc.). The number of bits allocated for the

opcode determined how many different instructions the architecture supports.

In addition to the opcode, many instructions also contain one or more operands,

which indicate where in registers or memory the data required for the operation is

located. For example, and add instruction requires two operands, and a not instruction

requires one.

 15 12 11 6 5 0

 +-----------------------------------+

Computer Organization and Architecture

 Page 54

 | Opcode | Operand | Operand |

 +-----------------------------------+

The opcode and operands are most often encoded as unsigned binary numbers in

order to minimize the number of bits used to store them. For example, a 4-bit opcode

encoded as a binary number could represent up to 16 different operations.

The control unit is responsible for decoding the opcode and operand bits in the

instruction register, and then generating the control signals necessary to drive all

other hardware in the CPU to perform the sequence of microoperations that comprise

the instruction.

Basic Computer Instruction Format:

The Basic Computer has a 16-bit instruction code similar to the examples described

above. It supports direct and indirect addressing modes.

How many bits are required to specify the addressing mode?

 15 14 12 11 0

 +------------------+

 | I | OP | ADDRESS |

 +------------------+

 I = 0: direct

 I = 1: indirect

Computer Instructions

All Basic Computer instruction codes are 16 bits wide. There are 3 instruction code

formats:

Memory-reference instructions take a single memory address as an operand, and

have the format:

 15 14 12 11 0

 +-------------------+

 | I | OP | Address |

 +-------------------+

Computer Organization and Architecture

 Page 55

If I = 0, the instruction uses direct addressing. If I = 1, addressing in indirect.

How many memory-reference instructions can exist?

Register-reference instructions operate solely on the AC register, and have the

following format:

 15 14 12 11 0

 +------------------+

 | 0 | 111 | OP |

 +------------------+

How many register-reference instructions can exist? How many memory-

reference instructions can coexist with register-reference instructions?

Input/output instructions have the following format:

 15 14 12 11 0

 +------------------+

 | 1 | 111 | OP |

 +------------------+

How many I/O instructions can exist? How many memory-reference

instructions can coexist with register-reference and I/O instructions?

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, with

the exception of the INPR register. At each clock pulse, the control unit sends control

signals to control inputs of the bus, the registers, and the ALU.

Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital logic

design techniques to produce a minimal, optimized circuit. In other words, the

control unit is like an ASIC (application-specific integrated circuit).

Computer Organization and Architecture

 Page 56

 A micro-programmed control unit is built from some sort of ROM. The desired

control signals are simply stored in the ROM, and retrieved in sequence to drive

the micro operations needed by a particular instruction.

Micro programmed control:

Micro programmed control is a control mechanism to generate control signals by

using a memory called control storage (CS), which contains the control

signals. Although micro programmed control seems to be advantageous to CISC

machines, since CISC requires systematic development of sophisticated control

signals, there is no intrinsic difference between these 2 control mechanisms.

Hard-wired control:

 Hardwired control is a control mechanism to generate control signals by using

appropriate finite state machine (FSM). The pair of "microinstruction-register" and

"control storage address register" can be regarded as a "state register" for the

hardwired control. Note that the control storage can be regarded as a kind of

combinational logic circuit. We can assign any 0, 1 values to each output

corresponding to each address, which can be regarded as the input for a

combinational logic circuit. This is a truth table.

Computer Organization and Architecture

 Page 57

Instruction Cycle

In this chapter, we examine the sequences of micro operations that the Basic

Computer goes through for each instruction. Here, you should begin to understand

how the required control signals for each state of the CPU are determined, and how

they are generated by the control unit.

The CPU performs a sequence of micro operations for each instruction. The sequence

for each instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch instruction

2. Decode

3. Fetch operand

4. Execute

Program execution can be represented as a top-down design:

1. Program execution

a. Instruction 1

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

b. Instruction 2

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

c. Instruction 3 ...

Computer Organization and Architecture

 Page 58

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed,

and then it is cleared to begin the next instruction. This process repeats until a HLT

instruction is executed, or until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the

control functions and micro operations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and

T2. Hence, all control inputs in the CPU during fetch and decode are functions of these

three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

The operation D0-7 ← decoded IR(12-14) is not a register transfer like most of our

micro operations, but is actually an inevitable consequence of loading a value into the

IR register. Since the IR outputs 12-14 are directly connected to a decoder, the outputs

of that decoder will change as soon as the new values of IR(12-14) propagate through

the decoder.

Note that incrementing the PC at time T1 assumes that the next instruction is at

the next address. This may not be the case if the current instruction is a branch

instruction. However, performing the increment here will save time if the next

instruction immediately follows, and will do no harm if it doesn't. The incremented PC

value is simply overwritten by branch instructions.

In hardware development, unlike serial software development, it is often

advantageous to perform work that may not be necessary. Since we can perform

multiple micro operations at the same time, we might was well do everything

that might be useful at the earliest possible time. Likewise, loading AR with the

Computer Organization and Architecture

 Page 59

address field from IR at T2 is only useful if the instruction is a memory-reference

instruction. We won't know this until T3, but there is no reason to wait since there is

no harm in loading AR immediately.

Input-Output and Interrupt

Hardware Summary

The Basic Computer I/O consists of a simple terminal with a keyboard and a

printer/monitor.

The keyboard is connected serially (1 data wire) to the INPR register. INPR is a shift

register capable of shifting in external data from the keyboard one bit at a time. INPR

outputs are connected in parallel to the ALU.

 Shift enable

 |

 v

 +-----------+ 1 +-------+

 | Keyboard |---/-->| INPR <|--- serial I/O clock

 +-----------+ +-------+

 |

 / 8

 | | |

 v v v

 +---------------+

 | ALU |

 +---------------+

 |

 / 16

 |

 v

 +---------------+

 | AC <|--- CPU master clock

 +---------------+

Computer Organization and Architecture

 Page 60

How many CPU clock cycles are needed to transfer a character from the keyboard to

the INPR register? (tricky)

Are the clock pulses provided by the CPU master clock?

RS232, USB, Firewire are serial interfaces with their own clock independent of the

CPU. (USB speed is independent of processor speed.)

 RS232: 115,200 kbps (some faster)

 USB: 11 mbps

 USB2: 480 mbps

 FW400: 400 mbps

 FW800: 800 mbps

 USB3: 4.8 gbps

OUTR inputs are connected to the bus in parallel, and the output is connected serially

to the terminal. OUTR is another shift register, and the printer/monitor receives an

end-bit during each clock pulse.

I/O Operations

Since input and output devices are not under the full control of the CPU (I/O events

are asynchronous), the CPU must somehow be told when an input device has new

input ready to send, and an output device is ready to receive more output. The FGI flip-

flop is set to 1 after a new character is shifted into INPR. This is done by the I/O

interface, not by the control unit. This is an example of an asynchronous input event

(not synchronized with or controlled by the CPU).

The FGI flip-flop must be cleared after transferring the INPR to AC. This must be

done as a micro operation controlled by the CU, so we must include it in the CU design.

The FGO flip-flop is set to 1 by the I/O interface after the terminal has finished

displaying the last character sent. It must be cleared by the CPU after transferring a

character into OUTR. Since the keyboard controller only sets FGI and the CPU only

clears it, a JK flip-flop is convenient:

 +-------+

 Keyboard controller --->| J Q |----->

 | | |

Computer Organization and Architecture

 Page 61

 +--------\-----\ | |

) or >----->|> FGI |

 +--------/-----/ | |

 | | |

 CPU-------------------->| K |

 +-------

How do we control the CK input on the FGI flip-flop? (Assume leading-edge

triggering.)

There are two common methods for detecting when I/O devices are ready,

namely software polling and interrupts. These two methods are discussed in the

following sections.

Stack Organization

Stack is the storage method of the items in which the last item included is the first one

to be removed/taken from the stack. Generally a stack in the computer is

a memory unit with an address register and the register holding the address of the

stack is known as the Stack Pointer (SP). A stack performs Insertion and Deletion

operation, were the operation of inserting an item is known as Push and operation of

deleting an item is known as Pop. Both Push and Pop operation results in

incrementing and decrementing the stack pointer respectively.

Register Stack

Register or memory words can be organized to form a stack. The stack pointer is

a register that holds the memory address of the top of the stack. When an item need

to be deleted from the stack, item on the top of the stack is deleted and the stack

pointer is decremented. Similarly, when an item needs to be added, the stack pointer is

incremented and writing the word at the position indicated by the stack pointer. There

are two 1 bit register; FULL and EMTY that are used for describing the

stack overflow and underflow conditions. Following micro-operations are performed

during inserting and deleting an item in/from the stack.

Insert:

SP <- SP + 1 // Increment the stack pointer to point the next higher address//

Computer Organization and Architecture

 Page 62

M[SP] <- DR // Write the item on the top of the stack//

If (SP = 0) then (Full <- 1) // Check overflow condition //

EMTY <- 0 // Mark that the stack is not empty //

Delete:

DR <- M[SP] //Read an item from the top of the stack//

SP <- SP 1 //Decrement the stack pointer //

If (SP = 0) then (EMTY <- 1) //Check underflow condition //

FULL <- 0 //Mark that the stack is not full //

Get all the resource regarding the homework help and assignment help at

Transtutors.com. With our team of experts, we are capable of providing homework

help and assignment help for all levels. With us you can be rest assured the all the

content provided for homework help and assignment help will be original and

plagiarism free.

Register Stack:-

A stack can be placed in a portion of a large memory as it can be organized as a

collection of a finite number of memory words as register.

Computer Organization and Architecture

 Page 63

In a 64- word stack, the stack pointer contains 6 bits because 26 = 64.

The one bit register FULL is set to 1 when the stack is full, and the one-bit register

EMTY is set to 1 when the stack is empty. DR is the data register that holes the binary

data to be written into on read out of the stack. Initially, SP is decide to O, EMTY is set

to 1, FULL = 0, so that SP points to the word at address O and the stack is masked

empty and not full.

PUSH SP ® SP + 1 increment stack pointer

M [SP] ® DR unit item on top of the Stack

It (SP = 0) then (FULL ® 1) check it stack is full

EMTY ® 0 mask the stack not empty.

POP DR ® [SP] read item trans the top of stack

SP ® SP –1 decrement SP

It (SP = 0) then (EMTY ® 1) check it stack is empty

FULL ® 0 mark the stack not full.

 A stack can be placed in a portion of a large memory or it can be organized as

a collection of a finite number of memory words or registers. Figure X shows the

organization of a 64-word register stack. The stack pointer register SP contains a

binary number whose value is equal to the address of the word that is currently on

top of the stack.

Three items are placed in the stack: A, B, and C in the order. item C is

on the top of the stack so that the content of sp is now 3. To remove the top item, the

stack is popped by reading the memory word at address 3 and decrementing the

content of SP. Item B is now on top of the stack since SP holds address 2. To insert a

new item, the stack is pushed by incrementing SP and writing a word in the next

higher location in the stack. Note that item C has read out but not physically removed.

This does not matter because when the stack is pushed, a new item is written in its

place.

In a 64-word stack, the stack pointer contains 6 bits because 26=64. since SP

has only six bits, it cannot exceed a number greater than 63(111111 in binary). When

Computer Organization and Architecture

 Page 64

63 is incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP

can accommodate only the six least significant bits. Similarly, when 000000 is

decremented by 1, the result is 111111. The one bit register Full is set to 1 when the

stack is full, and the one-bit register EMTY is set to 1 when the stack is empty of

items. DR is the data register that holds the binary data to be written in to or read out

of the stack.

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP

points to the word at address o and the stack is marked empty and not full. if the stack

is not full , a new item is inserted with a push operation. the push operation is

implemented with the following sequence of micro-operation.

SP ←SP + 1 (Increment stack pointer)

M(SP) ← DR (Write item on top of the stack)

if (sp=0) then (Full ← 1) (Check if stack is full)

Emty ← 0 (Marked the stack not empty)

The stack pointer is incremented so that it points to the address of the next-higher

word. A memory write operation inserts the word from DR into the top of the stack.

Note that SP holds the address of the top of the stack and that M(SP) denotes the

memory word specified by the address presently available in SP, the first item stored

in the stack is at address 1. The last item is stored at address 0, if SP reaches 0, the

stack is full of item, so FULLL is set to 1.

This condition is reached if the top item prior to the last push was in location 63

and after increment SP, the last item stored in location 0. Once an item is stored in

location 0, there are no more empty register in the stack. If an item is written in the

stack, obviously the stack cannot be empty, so EMTY is cleared to 0.

DR← M[SP] Read item from the top of stack

SP ← SP-1 Decrement stack Pointer

if(SP=0) then (Emty ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

Computer Organization and Architecture

 Page 65

The top item is read from the stack into DR. The stack pointer is then decremented. if

its value reaches zero, the stack is empty, so Empty is set to 1. This condition is

reached if the item read was in location 1. Once this item is read out, SP is

decremented and reaches the value 0, which is the initial value of SP. Note that if a

pop operation reads the item from location 0 and then SP is decremented, SP changes

to 111111, which is equal to decimal 63. In this configuration, the word in address 0

receives the last item in the stack. Note also that an erroneous operation will result if

the stack is pushed when FULL=1 or popped when EMTY =1.

Memory Stack :

A stack can exist as a stand-alone unit as in figure 4 or can be implemented in

a random access memory attached to CPU. The implementation of a stack in the CPU

is done by assigning a portion of memory to a stack operation and using a processor

register as a stack pointer. Figure shows a portion of computer memory partitioned in

to three segment program, data and stack. The program counter PC points at the

address of the next instruction in the program. The address register AR points at an

array of data. The stack pointer SP points at the top of the stack. The three register

are connected to a common address bus, and either one can provide an address for

memory. PC is used during the fetch phase to read an instruction. AR is used during

the execute phase to read an operand. SP is used to push or POP items into or from

the stack.

As show in figure :4 the initial value of SP is 4001 and the stack grows with

decreasing addresses. Thus the first item stored in the stack is at address 4000, the

second item is stored at address 3999, and the last address hat can be used for the

stack is 3000. No previous are available for stack limit checks.

We assume that the items in the stack communicate with a data register DR. A new

item is inserted with the push operation as follows.

SP← SP-1

M[SP] ← DR

Computer Organization and Architecture

 Page 66

The stack pointer is decremented so that it points at the address of the next word. A

Memory write operation insertion the word from DR into the top of the stack. A new

item is deleted with a pop operation as follows.

DR← M[SP]

SP←SP + 1

The top item is read from the stack in to DR. The stack pointer is then incremented to

point at the next item in the stack. Most computers do not provide hardware to check

for stack overflow (FULL) or underflow (Empty). The stack limit can be checked by

using two processor register: one to hold upper limit and other hold the lower limit.

After the pop or push operation SP is compared with lower or upper limit register.

REVERSE POLISH NOTATION

For example: A x B + C x D is an arithmetical expression written in infix notation, here

x (denotes multiplication). In this expression A and B are two operands and x is an

operator, similarly C and D are two operands and x is an operator. In this expression +

Computer Organization and Architecture

 Page 67

is another operator which is written between (A x B) and (C x D). Because of the

precedence of the operator multiplication is done first. The order of precedence is as:

1. Exponentiation have precedence one.

2. Multiplication and Division has precedence two.

3. Addition and subtraction has precedence three.

Reverse polish notation is also known as postfix notation is defined as: In postfix

notation operator is written after the operands. Examples of postfix notation are AB+

and CD-. Here A and B are two operands and the operator is written after these two

operands. The conversion from infix expression into postfix expression is shown

below.

 Convert the infix notation A x B + C x D + E x F into postfix notation?

SOLUTION

A x B + C x D + E x F

= [ABx] + [CDx] + [EFx]

= [ABxCDx] + [EFx]

= [ABxCDxEFx]

= ABxCDxEFx

So the postfix notation is ABxCDxEFx.

 Convert the infix notation {A – B + C x (D x E – F)} / G + H x K into postfix

notation?

{A – B + C x (D x E – F)} / G + H x K

= {A – B + C x ([DEx] – F)} / G + [HKx]

= {A – B + C x [DExF-]} / [GHKx+]

= {A – B + [CDExF-x]} / [GHKx+]

= {[AB-] + [CDExF-x]} / [GHKx+]

= [AB-CDExF-x+] / [GHKx+]

= [AB-CDExF-x+GHKx+/]

= AB-CDExF-x+GHKx+/

So the postfix notation is AB-CDExF-x+GHKx+/.

Now let’s how to evaluate a postfix expression, the algorithm for the evaluation of

postfix notation is shown below:

Computer Organization and Architecture

 Page 68

ALGORITHM:

(Evaluation of Postfix notation) This algorithm finds the result of a postfix expression.

Step1: Insert a symbol (say #) at the right end of the postfix expression.

Step2: Scan the expression from left to right and follow the Step3 and Step4 for each of

the symbol encountered.

Step3: if an element is encountered insert into stack.

Step4: if an operator (say &) is encountered pop the top element A (say) and next to

top element B (say) perform the following operation x = B&A. Push x into the top of

the stack.

Step5: if the symbol # is encountered then stop scanning.

 Evaluate the post fix expression 50 4 3 x 2 – + 7 8 x 4 / -?

SOLUTION

Put symbol # at the right end of the expression: 50 4 3 x 2 – + 7 8 x 4 / – #.

Postfix expression Symbol

scanned

Stack

50 4 3 x 2 – + 7 8 x 4 / – # _ _

 4 3 x 2 – + 7 8 x 4 / – # 50 50

 3 x 2 – + 7 8 x 4 / – # 4 50, 4

 x 2 – + 7 8 x 4 / – # 3 50, 4, 3

 2 – + 7 8 x 4 / – # x 50, 12

 – + 7 8 x 4 / – # 2 50, 12, 2

 + 7 8 x 4 / – # – 50, 10

 7 8 x 4 / – # + 60

 8 x 4 / – # 7 60, 7

 x 4 / – # 8 60, 7, 8

 4 / – # x 60, 56

 / – # 4 60, 56, 4

 – # / 60, 14

Computer Organization and Architecture

 Page 69

 # – 46

 _ # Result = 46

INSTRUCTION FORMATS

The most common fields found in instruction format are:-

(1) An operation code field that specified the operation to be performed

(2) An address field that designates a memory address or a processor registers.

(3) A mode field that specifies the way the operand or the effective address is

determined.

Computers may have instructions of several different lengths containing varying

number of addresses. The number of address field in the instruction format of a

computer depends on the internal organization of its registers. Most computers fall

into one of three types of CPU organization.

(1) Single Accumulator organization ADD X AC ® AC + M [×]

(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3

(3) Stack Organization PUSH X

Three address Instruction

Computer with three addresses instruction format can use each address field to

specify either processor register are memory operand.

ADD R1, A, B A1 ® M [A] + M [B]

ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A)

MUL X, R1, R2 M [X] R1 * R2

The advantage of the three address formats is that it results in short program when

evaluating arithmetic expression. The disadvantage is that the binary-coded

instructions require too many bits to specify three addresses.

Two Address Instruction

Computer Organization and Architecture

 Page 70

Most common in commercial computers. Each address field can specify either a

processes register on a memory word.

MOV R1, A R1 ® M [A]

ADD R1, B R1 ® R1 + M [B]

MOV R2, C R2 ® M [C] X = (A + B) * (C + D)

ADD R2, D R2 ® R2 + M [D]

MUL R1, R2 R1 ® R1 * R2

MOV X1 R1 M [X] ® R1

One Address instruction

It used an implied accumulator (AC) register for all data manipulation. For

multiplication/division, there is a need for a second register.

LOAD A AC ® M [A]

ADD B AC ® AC + M [B]

STORE T M [T] ® AC X = (A +B) × (C + A)

All operations are done between the AC register and a memory operand. It’s the

address of a temporary memory location required for storing the intermediate result.

 LOAD C AC ® M (C)

ADD D AC ® AC + M (D)

ML T AC ® AC + M (T)

STORE X M [×]® AC

Zero – Address Instruction

A stack organized computer does not use an address field for the instruction ADD and

MUL. The PUSH & POP instruction, however, need an address field to specify the

operand that communicates with the stack (TOS ® top of the stack)

PUSH A TOS ® A

PUSH B TOS ® B

ADD TOS ® (A + B)

PUSH C TOS ® C

PUSH D TOS ® D

ADD TOS ® (C + D)

Computer Organization and Architecture

 Page 71

MUL TOS ® (C + D) * (A + B)

POP X M [X] TOS

Addressing Modes

The operation field of an instruction specifies the operation to be performed. This

operation must be executed on some data stored in computer register as memory

words. The way the operands are chosen during program execution is dependent on

the addressing mode of the instruction. The addressing mode specifies a rule for

interpreting or modifying the address field of the instruction between the operand is

activity referenced. Computer use addressing mode technique for the purpose of

accommodating one or both of the following provisions.

(1) To give programming versatility to the uses by providing such facilities as

pointer to memory, counters for top control, indexing of data, and program relocation.

(2) To reduce the number of bits in the addressing fields of the instruction.

Addressing Modes: The most common addressing techniques are

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement

• Stack

All computer architectures provide more than one of these addressing modes.

The question arises as to how the control unit can determine which addressing mode

is being used in a particular instruction. Several approaches are used. Often, different

opcodes will use different addressing modes. Also, one or more bits in the instruction

Computer Organization and Architecture

 Page 72

format can be used as a mode field. The value of the mode field determines which

addressing mode is to be used.

What is the interpretation of effective address. In a system without virtual

memory, the effective address will be either a main memory address or a register. In a

virtual memory system, the effective address is a virtual address or a register. The

actual mapping to a physical address is a function of the paging mechanism and is

invisible to the programmer.

 Opcode Mode Address

Immediate Addressing:

The simplest form of addressing is immediate addressing, in which the

operand is actually present in the instruction:

OPERAND = A

This mode can be used to define and use constants or set initial values of

variables. The advantage of immediate addressing is that no memory reference other

than the instruction fetch is required to obtain the operand. The disadvantage is that

the size of the number is restricted to the size of the address field, which, in most

instruction sets, is small compared with the world length.

Direct Addressing:

A very simple form of addressing is direct addressing, in which the address field

contains the effective address of the operand:

Computer Organization and Architecture

 Page 73

EA = A

It requires only one memory reference and no special calculation.

Indirect Addressing:

With direct addressing, the length of the address field is usually less than the

word length, thus limiting the address range. One solution is to have the address field

refer to the address of a word in memory, which in turn contains a full-length address

of the operand. This is known as indirect addressing:

EA = (A)

Register Addressing:

Register addressing is similar to direct addressing. The only difference is that

the address field refers to a register rather than a main memory address:

EA = R

Computer Organization and Architecture

 Page 74

The advantages of register addressing are that only a small address field is

needed in the instruction and no memory reference is required. The disadvantage of

register addressing is that the address space is very limited.

The exact register location of the operand in case of Register Addressing

Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is

present.

Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the

address field refers to a register instead of a memory location. It requires only one

memory reference and no special calculation.

EA = (R)

Register indirect addressing uses one less memory reference than indirect

addressing. Because, the first information is available in a register which is nothing

but a memory address. From that memory location, we use to get the data or

information. In general, register access is much more faster than the memory access.

Displacement Addressing:

Computer Organization and Architecture

 Page 75

A very powerful mode of addressing combines the capabilities of direct

addressing and register indirect addressing, which is broadly categorized as

displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields,

at least one of which is explicit. The value contained in one address field (value = A)

is used directly. The other address field, or an implicit reference based on opcode,

refers to a register whose contents are added to A to produce the effective address.

The general format of Displacement Addressing is shown in the Figure 4.6.

Three of the most common use of displacement addressing are:

• Relative addressing

• Base-register addressing

• Indexing

Relative Addressing:

For relative addressing, the implicitly referenced register is the program

counter (PC). That is, the current instruction address is added to the address field to

produce the EA. Thus, the effective address is a displacement relative to the address

of the instruction.

Base-Register Addressing:

Computer Organization and Architecture

 Page 76

The reference register contains a memory address, and the address field

contains a displacement from that address. The register reference may be explicit or

implicit. In some implementation, a single segment/base register is employed and is

used implicitly. In others, the programmer may choose a register to hold the base

address of a segment, and the instruction must reference it explicitly.

Indexing:

The address field references a main memory address, and the reference

register contains a positive displacement from that address. In this case also the

register reference is sometimes explicit and sometimes implicit.

Generally index register are used for iterative tasks, it is typical that there is a

need to increment or decrement the index register after each reference to it. Because

this is such a common operation, some system will automatically do this as part of the

same instruction cycle.

This is known as auto-indexing. We may get two types of auto-indexing: -one is

auto-incrementing and the other one is -auto-decrementing. If certain registers are

devoted exclusively to indexing, then auto-indexing can be invoked implicitly and

automatically. If general purpose register are used, the auto index operation may need

to be signaled by a bit in the instruction.

Auto-indexing using increment can be depicted as follows:

EA = A + (R)

R = (R) + 1

Auto-indexing using decrement can be depicted as follows:

EA = A + (R)

R = (R) - 1

In some machines, both indirect addressing and indexing are provided, and it is

possible to employ both in the same instruction. There are two possibilities: The

indexing is performed either before or after the indirection. If indexing is performed

after the indirection, it is termed post indexing

EA = (A) + (R)

Computer Organization and Architecture

 Page 77

First, the contents of the address field are used to access a memory location

containing an address. This address is then indexed by the register value.

With pre indexing, the indexing is performed before the indirection:

EA = (A + (R)

An address is calculated, the calculated address contains not the operand, but the

address of the operand.

Stack Addressing:

A stack is a linear array or list of locations. It is sometimes referred to as a

pushdown list or last-in-first-out queue. A stack is a reserved block of locations. Items

are appended to the top of the stack so that, at any given time, the block is partially

filled. Associated with the stack is a pointer whose value is the address of the top of

the stack. The stack pointer is maintained in a register. Thus, references to stack

locations in memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine

instructions need not include a memory reference but implicitly operate on the top of

the stack.

Value addition: A Quick View

Various Addressing Modes with Examples

The most common names for addressing modes (names may differ

among architectures)

Addressing

modes
Example

Instruction
Meaning When used

Register Add R4,R3 R4 <- R4 + R3
When a value is

in a register

Immediate Add R4, #3 R4 <- R4 + 3 For constants

Displacement
Add R4,

100(R1)
R4 <- R4 +

Mem[100+R1]
Accessing local

variables

Register

deffered
Add R4,(R1) R4 <- R4 + M[R1]

Accessing using

a pointer or a

computed

address

Indexed
Add R3, (R1

+ R2)
R3 <- R3 +

Mem[R1+R2]

Useful in array

addressing:
R1 - base of

array
R2 - index

amount

Computer Organization and Architecture

 Page 78

Direct
Add R1,

(1001)
R1 <- R1 + Mem[1001]

Useful in

accessing static

data

Memory

deferred
Add R1,

@(R3)
R1 <- R1 +

Mem[Mem[R3]]

If R3 is the

address of a

pointer p, then

mode yields *p

Auto-
increment

Add R1,

(R2)+
R1 <- R1 +Mem[R2]
R2 <- R2 + d

Useful for

stepping

through arrays

in a loop.
R2 - start of

array
d - size of an

element

Auto-
decrement

Add R1,-

(R2)
R2 <-R2-d
R1 <- R1 + Mem[R2]

Same as

autoincrement.
Both can also

be used to

implement a

stack as push

and pop

Scaled
Add R1,

100(R2)[R3]
R1<-

R1+Mem[100+R2+R3*d]

Used to index

arrays. May be

applied to any

base

addressing

mode in some

machines.

Notation:
<- - assignment
Mem - the name for memory:
Mem[R1] refers to contents of memory location whose address is given by the

contents of R1

Source: Self

Data Transfer & Manipulation

Computer provides an extensive set of instructions to give the user the flexibility to

carryout various computational task. Most computer instruction can be classified into

three categories.

(1) Data transfer instruction

(2) Data manipulation instruction

(3) Program control instruction

Data transfer instruction cause transferred data from one location to another without

changing the binary instruction content. Data manipulation instructions are those that

perform arithmetic logic, and shift operations. Program control instructions provide

Computer Organization and Architecture

 Page 79

decision-making capabilities and change the path taken by the program when

executed in the computer.

(1) Data Transfer Instruction

Data transfer instruction move data from one place in the computer to another

without changing the data content. The most common transfers are between memory

and processes registers, between processes register & input or output, and between

processes register themselves

(Typical data transfer instruction)

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

(2) Data Manipulation Instruction

It performs operations on data and provides the computational capabilities for the

computer. The data manipulation instructions in a typical computer are usually

divided into three basic types.

(a) Arithmetic Instruction

(b) Logical bit manipulation Instruction

(c) Shift Instruction.

(a) Arithmetic Instruction

Name Mnemonic

Increment INC

Decrement DEC

Add Add

Computer Organization and Architecture

 Page 80

Subtract Sub

Multiply MUL

Divide DIV

Add with Carry ADDC

Subtract with Basses SUBB

Negate (2’s Complement) NEG

(b) Logical & Bit Manipulation Instruction

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-Or XOR

Clear Carry CLRC

Set Carry SETC

Complement Carry COMC

Enable Interrupt ET

Disable Interrupt OI

 (c) Shift Instruction

Instructions to shift the content of an operand are quite useful and one often provided

in several variations. Shifts are operation in which the bits of a word are moved to the

left or right. The bit-shifted in at the and of the word determines the type of shift used.

Shift instruction may specify either logical shift, arithmetic shifts, or rotate type shifts.

Name Mnemonic

Logical Shift right SHR

Logical Shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Computer Organization and Architecture

 Page 81

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

Introduction About Program Control:-

A program that enhances an operating system by creating an environment in which

you can run other programs. Control programs generally provide a graphical

interface and enable you to run several programs at once in different windows.

Control programs are also called operating environments.

The program control functions are used when a series of conditional or

unconditional jump and return instruction are required. These instructions allow the

program to execute only certain sections of the control logic if a fixed set of logic

conditions are met. The most common instructions for the program control available

in most controllers are described in this section.

Introduction About status bit register:-

A status register, flag register, or condition code register is a collection of

status flag bits for a processor. An example is the FLAGS register of the computer

architecture. The flags might be part of a larger register, such as a program status

word (PSW) register.

The status register is a hardware register which contains information about the

state of the processor. Individual bits are implicitly or explicitly read and/or written

by the machine code instructions executing on the processor. The status register in a

traditional processor design includes at least three central flags: Zero, Carry, and

Overflow, which are set or cleared automatically as effects of arithmetic and bit

manipulation operations. One or more of the flags may then be read by a subsequent

conditional jump instruction (including conditional calls, returns, etc. in some

machines) or by some arithmetic, shift/rotate or bitwise operation, typically using the

carry flag as input in addition to any explicitly given operands. There are also

processors where other classes of instructions may read or write the fundamental

Computer Organization and Architecture

 Page 82

zero, carry or overflow flags, such as block-, string- or dedicated input/output

instructions, for instance.

Some CPU architectures, such as the MIPS and Alpha, do not use a dedicated flag

register. Others do not implicitly set and/or read flags. Such machines either do not

pass implicit status information between instructions at all, or do they pass it in a

explicitly selected general purpose register.

A status register may often have other fields as well, such as more specialized

flags, interrupt enable bits, and similar types of information. During an interrupt, the

status of the thread currently executing can be preserved (and later recalled) by

storing the current value of the status register along with the program counter and

other active registers into the machine stack or some other reserved area of memory.

Common flags:-

This is a list of the most common CPU status register flags, implemented in almost all

modern processors.

Flag Name Description

Z Zero flag
Indicates that the result of arithmetic or logical

operation (or, sometimes, a load) was zero.

C Carry flag

Enables numbers larger than a single word to be

added/subtracted by carrying a binary digit from a less

significant word to the least significant bit of a more

significant word as needed. It is also used to extend bit

shifts and rotates in a similar manner on many

processors (sometimes done via a dedicated X flag).

S / N

Sign flag

Negative

flag

Indicates that the result of a mathematical operation is

negative. In some processors, the N and S flags are

distinct with different meanings and usage: One

indicates whether the last result was negative whereas

the other indicates whether a subtraction or addition

has taken place.

Computer Organization and Architecture

 Page 83

V / O / W
Overflow

flag

Indicates that the signed result of an operation is too

large to fit in the register width using twos complement

representation.

Introduction About Conditional branch instruction:-

Conditional branch instruction:-

Conditional branch instruction is the branch instruction bit and BR instruction is the

Program control instruction.

The conditional Branch Instructions are listed as Bellow:-

Mnemonics Branch Instruction Tested control

BZ Branch if Zero Z=1

BNZ Branch if not Zero Z=0

BC Branch if Carry C=1

BNC Branch if not Carry C=0

BP Branch if Plus S=0

BM Branch if Minus S=1

BV Branch if Overflow V=1

BNV Branch if not Overflow V=0

Unsigned Compare(A-B):-

Mnemonics Branch Instruction Tested control

BHI Branch if Higher A > B

BHE Branch if Higher or Equal A >= B

BLO Branch if Lower A < B

BLE Branch if Lower or Equal A <= B

BE Branch if Equal A=B

BNE Branch if not Equal A not = B

Signed Compare(A-B):

Mnemonics Branch Instruction Tested control

Computer Organization and Architecture

 Page 84

BGT Branch if Greater Than A > B

BGE Branch if Greater Than or Equal A >= B

BLT Branch if Less Than A < B

BLE Branch if Less Than or Equal A <= B

BE Branch if Equal A=B

BNE Branch if not Equal A not = B

Introduction About program interrupt:-

When a Process is executed by the CPU and when a user Request for another Process

then this will create disturbance for the Running Process. This is also called as

the Interrupt.

Interrupts can be generated by User, Some Error Conditions and also by

Software’s and the hardware’s. But CPU will handle all the Interrupts very carefully

because when Interrupts are generated then the CPU must handle all the Interrupts

Very carefully means the CPU will also Provide Response to the Various Interrupts

those are generated. So that When an interrupt has Occurred then the CPU will handle

by using the Fetch, decode and Execute Operations.

Interrupts allow the operating system to take notice of an external event, such

as a mouse click. Software interrupts, better known as exceptions, allow the OS to

handle unusual events like divide-by-zero errors coming from code execution.

The sequence of events is usually like this:

Hardware signals an interrupt to the processor

The processor notices the interrupt and suspends the currently running software

The processor jumps to the matching interrupt handler function in the OS

The interrupt handler runs its course and returns from the interrupt

The processor resumes where it left off in the previously running software

The most important interrupt for the operating system is the timer tick interrupt. The

timer tic interrupt allows the OS to periodically regain control from the currently

running user process. The OS can then decide to schedule another process, return back

Computer Organization and Architecture

 Page 85

to the same process, do housekeeping, etc. The timer tick interrupt provides the

foundation for the concept of preemptive multitasking.

TYPES OF INTERRUPTS

Generally there are three types of Interrupts those are Occurred For Example

 1) Internal Interrupt

2) External Interrupt.

3) Software Interrupt.

1.Internal Interrupt:

• When the hardware detects that the program is doing something wrong, it will

usually generate an interrupt usually generate an interrupt.

– Arithmetic error - Invalid Instruction

– Addressing error - Hardware malfunction

– Page fault – Debugging

• A Page Fault interrupt is not the result of a program error, but it does require the

operating system to get control.

The Internal Interrupts are those which are occurred due to Some Problem in

the Execution For Example When a user performing any Operation which contains any

Error and which contains any type of Error. So that Internal Interrupts are those

which are occurred by the Some Operations or by Some Instructions and the

Operations those are not Possible but a user is trying for that Operation. And The

Software Interrupts are those which are made some call to the System for Example

while we are Processing Some Instructions and when we wants to Execute one more

Application Programs.

2.External Interrupt:

• I/O devices tell the CPU that an I/O request has completed by sending an interrupt

signal to the processor.

• I/O errors may also generate an interrupt.

Computer Organization and Architecture

 Page 86

• Most computers have a timer which interrupts the CPU every so many interrupts the

CPU every so many milliseconds.

The External Interrupt occurs when any Input and Output Device request for any

Operation and the CPU will Execute that instructions first For Example When a

Program is executed and when we move the Mouse on the Screen then the CPU will

handle this External interrupt first and after that he will resume with his Operation.

3.Software interrupts:

These types if interrupts can occur only during the execution of an instruction. They

can be used by a programmer to cause interrupts if need be. The primary purpose of

such interrupts is to switch from user mode to supervisor mode.

A software interrupt occurs when the processor executes an INT instruction.

Written in the program, typically used to invoke a system service. A processor

interrupt is caused by an electrical signal on a processor pin. Typically used by devices

to tell a driver that they require attention. The clock tick interrupt is very common; it

wakes up the processor from a halt state and allows the scheduler to pick other work

to perform.

A processor fault like access violation is triggered by the processor itself when it

encounters a condition that prevents it from executing code. Typically when it tries to

read or write from unmapped memory or encounters an invalid instruction.

CISC Characteristics

 A computer with large number of instructions is called complex instruction set

computer or CISC. Complex instruction set computer is mostly used in scientific

computing applications requiring lots of floating point arithmetic.

 A large number of instructions - typically from 100 to 250 instructions.

 Some instructions that perform specialized tasks and are used infrequently.

 A large variety of addressing modes - typically 5 to 20 different modes.

 Variable-length instruction formats

Computer Organization and Architecture

 Page 87

 Instructions that manipulate operands in memory.

RISC Characteristics

 A computer with few instructions and simple construction is called reduced

instruction set computer or RISC. RISC architecture is simple and efficient. The major

characteristics of RISC architecture are,

 Relatively few instructions

 Relatively few addressing modes

 Memory access limited to load and store instructions

 All operations are done within the registers of the CPU

 Fixed-length and easily-decoded instruction format.

 Single cycle instruction execution

 Hardwired and micro programmed control

Example of RISC & CISC

 Examples of CISC instruction set architectures are PDP-11, VAX, Motorola 68k,

and your desktop PCs on intel’s x86 architecture based too .

 Examples of RISC families include DEC Alpha, AMD 29k, ARC, Atmel AVR,

Blackfin, Intel i860 and i960, MIPS, Motorola 88000, PA-RISC, Power (including PowerPC),

SuperH, SPARC and ARM too.

Computer Organization and Architecture

 Page 88

Which one is better ?

We cannot differentiate RISC and CISC technology because both are suitable at its specific

application. What counts is how fast a chip can execute the instructions it is given and how well it

runs existing software. Today, both RISC and CISC manufacturers are doing everything to get an

edge on the competition.

http://www.laureateiit.com/projects/bacii2014/projects/coa_anil/i_o_interface.html

UNIT – III (12 Lectures)

MICRO‐PROGRAMMED CONTROL: Control memory, address sequencing, micro‐program

example, design of control unit.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-7 Pages: 213-238

Computer Organization and Architecture

 Page 89

COMPUTER ARITHMETIC: Addition and subtraction, multiplication and division algorithms,

floating‐point arithmetic operation, decimal arithmetic unit, decimal arithmetic operations.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-10 Pages: 333-380

Control Memory:

Control memory is a random access memory(RAM) consisting of addressable storage

registers. It is primarily used in mini and mainframe computers. It is used as a temporary

storage for data. Access to control memory data requires less time than to main memory; this

speeds up CPU operation by reducing the number of memory references for data storage and

retrieval. Access is performed as part of a control section sequence while the master clock

oscillator is running. The control memory addresses are divided into two groups: a task mode

and an executive (interrupt) mode.

Addressing words stored in control memory is via the address select logic for each of

the register groups. There can be up to five register groups in control memory. These groups

select a register for fetching data for programmed CPU operation or for maintenance console

or equivalent display or storage of data via maintenance console or equivalent. During

programmed CPU operations, these registers are accessed directly by the CPU logic. Data

routing circuits are used by control memory to interconnect the registers used in control

memory. Some of the registers contained in a control memory that operate in the task and

the executive modes include the following: Accumulators Indexes Monitor clock status

indicating registers Interrupt data registers

• The control unit in a digital computer initiates sequences of micro operations

• The complexity of the digital system is derived form the number of sequences that are

performed

• When the control signals are generated by hardware, it is hardwired

• In a bus-oriented system, the control signals that specify micro operations are groups of bits

that select the paths in multiplexers, decoders, and ALUs.

Computer Organization and Architecture

 Page 90

• The control unit initiates a series of sequential steps of micro operations

• The control variables can be represented by a string of 1’s and 0’s called a control word

• A micro programmed control unit is a control unit whose binary control variables are stored

in memory

• A sequence of microinstructions constitutes a micro program

• The control memory can be a read-only memory

• Dynamic microprogramming permits a micro program to be loaded and uses a writable

control memory

• A computer with a micro programmed control unit will have two separate memories: a

main memory and a control memory

• The micro program consists of microinstructions that specify various internal control

signals for execution of register micro operations

• These microinstructions generate the micro operations to:

 fetch the instruction from main memory

 evaluate the effective address

 execute the operation

 return control to the fetch phase for the next instruction

• The control memory address register specifies the address of the microinstruction

• The control data register holds the microinstruction read from memory

• The microinstruction contains a control word that specifies one or more micro operations

for the data processor

• The location for the next micro instruction may, or may not be the next in sequence

• Some bits of the present micro instruction control the generation of the address of the next

micro instruction

• The next address may also be a function of external input conditions

• While the micro operations are being executed, the next address is computed in the next

address generator circuit (sequencer) and then transferred into the CAR to read the next

micro instructions

• Typical functions of a sequencer are: o incrementing the CAR by one

 loading into the CAR and address from control memory

 transferring an external address

 loading an initial address to start the control operations

Computer Organization and Architecture

 Page 91

• A clock is applied to the CAR and the control word and next-address information are taken

directly from the control memory

• The address value is the input for the ROM and the control work is the output

• No read signal is required for the ROM as in a RAM

• The main advantage of the micro programmed control is that once the

hardware configuration is established, there should be no need for h/w or wiring changes

• To establish a different control sequence, specify a different set of microinstructions for

control memory

Addressing Sequencing:

Each machine instruction is executed through the application of a sequence of

microinstructions. Clearly, we must be able to sequence these; the collection of

microinstructions which implements a particular machine instruction is called a routine.

The MCU typically determines the address of the first microinstruction which

implements a machine instruction based on that instruction's opcode. Upon machine power-

up, the CAR should contain the address of the first microinstruction to be executed.

The MCU must be able to execute microinstructions sequentially (e.g., within routines), but

must also be able to ``branch'' to other microinstructions as required; hence, the need for a

sequencer.

The microinstructions executed in sequence can be found sequentially in the CM, or

can be found by branching to another location within the CM. Sequential retrieval of

microinstructions can be done by simply incrementing the current CAR contents; branching

requires determining the desired CW address, and loading that into the CAR.

CAR

Control Address Register

Computer Organization and Architecture

 Page 92

control ROM

control memory (CM); holds CWs

opcode

opcode field from machine instruction

mapping logic

hardware which maps opcode into microinstruction address

branch logic

determines how the next CAR value will be determined from all the various possibilities

multiplexors

implements choice of branch logic for next CAR value

incrementer

generates CAR + 1 as a possible next CAR value

SBR

used to hold return address for subroutine-call branch operations

Conditional branches are necessary in the micro program. We must be able to perform

some sequences of micro-ops only when certain situations or conditions exist (e.g., for

conditional branching at the machine instruction level); to implement these, we need to be

able to conditional execute or avoid certain microinstructions within routines.

Subroutine branches are helpful to have at the micro program level. Many routines

contain identical sequences of microinstructions; putting them into subroutines allows those

routines to be shorter, thus saving memory. Mapping of opcodes to microinstruction

addresses can be done very simply. When the CM is designed, a ``required'' length is

determine for the machine instruction routines (i.e., the length of the longest one). This is

rounded up to the next power of 2, yielding a value k such that 2 k microinstructions will be

sufficient to implement any routine.

The first instruction of each routine will be located in the CM at multiples of this

``required'' length. Say this is N. The first routine is at 0; the next, at N; the next, at 2*N; etc.

This can be accomplished very easily. For instance, with a four-bit opcode and routine length

of four microinstructions, k is two; generate the microinstruction address by appending two

zero bits to the opcode:

Computer Organization and Architecture

 Page 93

Alternately, the n-bit opcode value can be used as the ``address'' input of a 2n x M ROM; the

contents of the selected ``word'' in the ROM will be the desired M-bit CAR address for the

beginning of the routine implementing that instruction. (This technique allows for variable-

length routines in the CM.) >pp We choose between all the possible ways of generating CAR

values by feeding them all into a multiplexor bank, and implementing special branch logic

which will determine how the muxes will pass on the next address to the CAR.

As there are four possible ways of determining the next address, the multiplexor bank

is made up of N 4x1 muxes, where N is the number of bits in the address of a CW. The branch

logic is used to determine which of the four possible ``next address'' values is to be passed on

to the CAR; its two output lines are the select inputs for the muxes.

Computer Organization and Architecture

 Page 94

Addition and Subtraction

Four basic computer arithmetic operations are addition, subtraction, division and

multiplication. The arithmetic operation in the digital computer manipulate data to produce

results. It is necessary to design arithmetic procedures and circuits to program arithmetic

operations using algorithm. The algorithm is a solution to any problem and it is stated by a

finite number of well-defined procedural steps. The algorithms can be developed for the

following types of data.

1. Fixed point binary data in signed magnitude representation

2. Fixed point binary data in signed 2’s complement representation.

3. Floating point representation

4. Binary Coded Decimal (BCD) data

Addition and Subtraction with signed magnitude

Consider two numbers having magnitude A and B. When the signed numbers are added or

subtracted, there can be 8 different conditions depending on the sign and the operation

performed as shown in the table below:

Operation Add magnitude When A > B When A < B When A = B

(+A) + (+B) +(A + B) -- -- --

(+A) + (-B) -- +(A - B) -(B - A) +(A - B)

(-A) + (+B) -- -(A - B) +(B - A) +(A - B)

(-A) + (-B) -(A + B) -- -- --

(+A) - (+B) -- +(A - B) -(B - A) +(A - B)

(+A) - (-B) +(A + B) -- -- --

(-A) - (+B) -(A + B) -- -- --

(-A) - (-B) -- -(A - B) +(B - A) +(A - B)

From the table, we can derive an algorithm for addition and subtraction as follows:

Addition (Subtraction) Algorithm:

 When the signs of A & B are identical, add the two magnitudes and attach the sign of A to

the result.

 When the sign of A & B are different, compare the magnitude and subtract the smaller

number from the large number. Choose the sign of the result to be same as A if A > B, or the

complement of the sign of A if A < B. If the two numbers are equal, subtract B from A and

make the sign of the result positive.

Computer Organization and Architecture

 Page 95

Hardware Implementation

fig: Hardware for signed magnitude addition and subtraction

The hardware consists of two registers A and B to store the magnitudes, and two flip-

flops As and Bs to store the corresponding signs. The results can be stored in the register A

and As which acts as an accumulator. The subtraction is performed by adding A to the 2’s

complement of B. The output carry is transferred to the flip-flop E. The overflow may occur

during the add operation which is stored in the flip-flop A Ë… F. When m = 0, the output of E is

transferred to the adder without any change along with the input carry of ‘0".

The output of the parallel adder is equal to A + B which is an add operation. When m =

1, the content of register B is complemented and transferred to parallel adder along with the

input carry of 1. Therefore, the output of parallel is equal to A + B’ + 1 = A – B which is a

subtract operation.

Computer Organization and Architecture

 Page 96

Hardware Algorithm

fig: flowchart for add and subtract operations

As and Bs are compared by an exclusive-OR gate. If output=0, signs are identical, if 1 signs are

different.

 For Add operation, identical signs dictate addition of magnitudes and for operation

identical signs dictate addition of magnitudes and for subtraction, different magnitudes

dictate magnitudes be added. Magnitudes are added with a micro operation EA

 Two magnitudes are subtracted if signs are different for add operation and identical for

subtract operation. Magnitudes are subtracted with a micro operation EA = B and number

(this number is checked again for 0 to make positive 0 [As=0]) in A is correct result. E = 0

indicates A < B, so we take 2’s complement of A.

Multiplication

Hardware Implementation and Algorithm

Generally, the multiplication of two final point binary number in signed magnitude

representation is performed by a process of successive shift and ADD operation. The process

consists of looking at the successive bits of the multiplier (least significant bit first). If the

multiplier is 1, then the multiplicand is copied down otherwise, 0’s are copied. The numbers

Computer Organization and Architecture

 Page 97

copied down in successive lines are shifted one position to the left and finally, all the numbers

are added to get the product.

But, in digital computers, an adder for the summation (∑) of only two binary numbers are

used and the partial product is accumulated in register. Similarly, instead of shifting the

multiplicand to the left, the partial product is shifted to the right. The hardware for the

multiplication of signed magnitude data is shown in the figure below.

Hardware for multiply operation

Initially, the multiplier is stored q register and the multiplicand in the B register. A register is

used to store the partial product and the sequence counter (SC) is set to a number equal to

the number of bits in the multiplier. The sum of A and B form the partial product and both

shifted to the right using a statement “Shr EAQ” as shown in the hardware algorithm. The flip

flops As, Bs & Qs store the sign of A, B & Q respectively. A binary ‘0” inserted into the flip-flop

E during the shift right.

Hardware Algorithm

flowchart for multiply algorithm

Computer Organization and Architecture

 Page 98

Example: Multiply 23 by 19 using multiply algorithm.

multiplicand E A Q SC

Initially, 0 00000 10011 101(5)

Iteration1(Qn=1),

add B

first partial product

shrEAQ,

0

00000

+10111

10111

0 01011 11001 100(4)

Iteration2(Qn=1)

Add B

Second partial product

shrEAQ,

1

01011

+10111

00010

11001

0 10001 01100 011(3)

Iteration3(Qn=0)

shrEAQ,
0 01000 10110 010(2)

Iteration4(Qn=0)

shrEAQ,
0 00100 01011 001(1)

Iteration5(Qn=1

Add B

Fifth partial product

shrEAQ,

0

00100

+10111

11011

01011

0 01101 10101 000

FinalProductinAQ 0110110101

The final product is in register A & Q. therefore, the product is 0110110101.

Booth Algorithm

The algorithm that is used to multiply binary integers in signed 2’s complement form is called

booth multiplication algorithm. It works on the principle that the string 0’s in the multiplier

doesn’t need addition but just the shifting and the sting of 1’s from bit weight 2k to 2m can be

treated as 2k+1 – 2m (Example, +14 = 001110 = 23=1 – 21 = 14). The product can be obtained by

shifting the binary multiplication to the left and subtraction the multiplier shifted left once.

According to booth algorithm, the rule for multiplication of binary integers in signed 2’s

complement form are:

 The multiplicand is subtracted from the partial product of the first least significant bit is 1

in a string of 1’s in the multiplicand.

Computer Organization and Architecture

 Page 99

 The multiplicand is added to the partial product if the first least significant bit is 0

(provided that there was a previous 1) in a string of 0’s in the multiplier.

 The partial product doesn’t change when the multiplier bit is identical to the previous

multiplier bit.

This algorithm is used for both the positive and negative numbers in signed 2’s complement

form. The hardware implementation of this algorithm is in figure below:

The flowchart for booth multiplication algorithm is given below:

flowchart for booth multiplication algorithm

Numerical Example: Booth algorithm

BR=10111(Multiplicand)

QR=10011(Multiplier)

Array Multiplier

The multiplication algorithm first check the bits of the multiplier one at time and form partial

product. This is a sequential process that requires a sequence of add and shift micro

operation. This method is complicated and time consuming. The multiplication of 2 binary

Computer Organization and Architecture

 Page 100

numbers can also be done with one micro operation by using combinational circuit that

provides the product all at once.

Example.

Consider that the multiplicand bits are b1 and b0 and the multiplier bits are a1 and a0. The

partial product is c3c2c1c0. The multiplication two bits a0 and a1 produces a binary 1 if both

the bits are 1, otherwise it produces a binary 0. This is identical to the AND operation and can

be implemented with the AND gates as shown in figure.

2-bit by 2-bit array multiplier

Division Algorithm

The division of two fixed point signed numbers can be done by a process of successive

compare shift and subtraction. When it is implemented in digital computers, instead of

shifting the divisor to the right, the dividend or the partial remainder is shifted to the left. The

subtraction can be obtained by adding the number A to the 2’s complement of number B. The

information about the relative magnitudes of the information about the relative magnitudes

of numbers can be obtained from the end carry,

Hardware Implementation

The hardware implementation for the division signed numbers is shown id the figure.

Computer Organization and Architecture

 Page 101

Division Algorithm

The divisor is stored in register B and a double length dividend is stored in register A and Q.

the dividend is shifted to the left and the divider is subtracted by adding twice complement of

the value. If E = 1, then A >= B. In this case, a quotient bit 1 is inserted into Qn and the partial

remainder is shifted to the left to repeat the process. If E = 0, then A > B. In this case, the

quotient bit Qn remains zero and the value of B is added to restore the partial remainder in A

to the previous value. The partial remainder is shifted to the left and approaches continues

until the sequence counter reaches to 0. The registers E, A & Q are shifted to the left with 0

inserted into Qn and the previous value of E is lost as shown in the flow chart for division

algorithm.

flowchart for division algorithm

This algorithm can be explained with the help of an example.

Consider that the divisor is 10001 and the dividend is 01110.

Computer Organization and Architecture

 Page 102

binary division with digital hardware

Restoring method

Method described above is restoring method in which partial remainder is restored by

adding the divisor to the negative result. Other methods:

Comparison method: A and B are compared prior to subtraction. Then if A >= B, B is

subtracted from A. if A < B nothing is done. The partial remainder is then shifted left and

numbers are compared again. Comparison inspects end carry out of the parallel adder before

transferring to E.

Non-restoring method: In contrast to restoring method, when A -B is negative, B is not

added to restore A but instead, negative difference is shifted left and then B is added. How is it

possible? Let’s argue:

 In flowchart for restoring method, when A < B, we restore A by operation A - B + B. Next

time in a loop,

this number is shifted left (multiplied by 2) and B subtracted again, which gives: 2 (A - B +

B) – B = 2 A - B.

 In Non-restoring method, we leave A - B as it is. Next time around the loop, the number is

shifted left and B is added: 2 (A - B) + B = 2 A - B (same as above).

Computer Organization and Architecture

 Page 103

Divide Overflow

The division algorithm may produce a quotient overflow called dividend overflow. The

overflow can occur of the number of bits in the quotient are more than the storage capacity of

the register. The overflow flip-flop DVF is set to 1 if the overflow occurs.

The division overflow can occur if the value of the half most significant bits of the dividend is

equal to or greater than the value of the divisor. Similarly, the overflow can occue=r if the

dividend is divided by a 0. The overflow may cause an error in the result or sometimes it may

stop the operation. When the overflow stops the operation of the system, then it is called

divide stop.

Arithmetic Operations on Floating-Point Numbers

The rules apply to the single-precision IEEE standard format. These rules

specify only the major steps needed to perform the four operations. Intermediate

results for both mantissas and exponents might require more than 24 and 8 bits,

respectively & overflow or an underflow may occur. These and other aspects of the

operations must be carefully considered in designing an arithmetic unit that meets the

standard. If their exponents differ, the mantissas of floating-point numbers must be

shifted with respect to each other before they are added or subtracted. Consider a

decimal example in which we wish to add 2.9400 x to 4.3100 x . We rewrite

2.9400 x as 0.0294 x and then perform addition of the mantissas to get 4.3394

x . The rule for addition and subtraction can be stated as follows:

Add/Subtract Rule

The steps in addition (FA) or subtraction (FS) of floating-point numbers (s1, eˆ , f1) fad{s2, eˆ

2, f2) are as follows.

1. Unpack sign, exponent, and fraction fields. Handle special operands such as zero,

infinity, or NaN(not a number).

2. Shift the significand of the number with the smaller exponent right by bits.

3. Set the result exponent er to max(e1,e2).

4. If the instruction is FA and s1= s2 or if the instruction is FS and s1 ≠ s2 then add the

significands; otherwise subtract them.

Computer Organization and Architecture

 Page 104

5. Count the number z of leading zeros. A carry can make z = -1. Shift the result

significand left z bits or right 1 bit if z = -1.

6. Round the result significand, and shift right and adjust z if there is rounding overflow,

which is a carry-out of the leftmost digit upon rounding.

7. Adjust the result exponent by er = er - z, check for overflow or underflow, and pack

the result sign, biased exponent, and fraction bits into the result word.

Multiplication and division are somewhat easier than addition and subtraction, in that

no alignment of mantissas is needed.

BCD Adder:

BCD adder A 4-bit binary adder that is capable of adding two 4-bit words having a BCD

(binary-coded decimal) format. The result of the addition is a BCD-format 4-bit output word,

representing the decimal sum of the addend and augend, and a carry that is generated if this

sum exceeds a decimal value of 9. Decimal addition is thus possible using these devices.

http://1.bp.blogspot.com/-VWDUiPkrcJo/U1ubZ8hxBeI/AAAAAAAAAnQ/xJLwCPum-lc/s1600/1323_block+diagram+of+bcd+adder.png
http://1.bp.blogspot.com/-VWDUiPkrcJo/U1ubZ8hxBeI/AAAAAAAAAnQ/xJLwCPum-lc/s1600/1323_block+diagram+of+bcd+adder.png

Computer Organization and Architecture

 Page 105

UNIT – IV (10 Lectures)

THE MEMORY SYSTEM: Basic concepts, semiconductor RAM types of read ‐ only memory

(ROM), cache memory, performance considerations, virtual memory, secondary storage, raid,

direct memory access (DMA).

Book: Carl Hamacher, Zvonks Vranesic, SafeaZaky (2002), Computer Organization, 5th

edition, McGraw Hill: Unit-5 Pages: 292-366

BASIC CONCEPTS OF MEMORY SYSTEM

The maximum size of the Main Memory (MM) that can be used in any computer is

determined by its addressing scheme. For example, a 16-bit computer that generates 16-bit

addresses is capable of addressing upto 216 =64K memory locations. If a machine generates

32-bit addresses, it can access upto 232 = 4G memory locations. This number represents the

size of address space of the computer.

If the smallest addressable unit of information is a memory word, the machine is called

word-addressable. If individual memory bytes are assigned distinct addresses, the computer

is called byte-addressable. Most of the commercial machines are byte addressable. For

example in a byte-addressable 32-bit computer, each memory word contains 4 bytes. A

possible word-address assignment would be:

 Word Address Byte Address

0 0 1 2 3

4 4 5 6 7

8 8 9 10 11

. ….. . ….. . …..

With the above structure a READ or WRITE may involve an entire memory word or it may

involve only a byte. In the case of byte read, other bytes can also be read but ignored by the

CPU. However, during a write cycle, the control circuitry of the MM must ensure that only the

specified byte is altered. In this case, the higher-order 30 bits can specify the word and the

lower-order 2 bits can specify the byte within the word.

CPU-Main Memory Connection – A block schematic: -

From the system standpoint, the Main Memory (MM) unit can be viewed as a “block box”.

Data transfer between CPU and MM takes place through the use of two CPU registers, usually

called MAR (Memory Address Register) and MDR (Memory Data Register). If MAR is K bits

long and MDR is ‘n’ bits long, then the MM unit may contain upto 2k addressable locations and

Computer Organization and Architecture

 Page 106

each location will be ‘n’ bits wide, while the word length is equal to ‘n’ bits. During a “memory

cycle”, n bits of data may be transferred between the MM and CPU.

This transfer takes place over the processor bus, which has k address lines (address

bus), n data lines (data bus) and control lines like Read, Write, Memory Function completed

(MFC), Bytes specifiers etc (control bus). For a read operation, the CPU loads the address into

MAR, set READ to 1 and sets other control signals if required. The data from the MM is loaded

into MDR and MFC is set to 1. For a write operation, MAR, MDR are suitably loaded by the

CPU, write is set to 1 and other control signals are set suitably. The MM control circuitry loads

the data into appropriate locations and sets MFC to 1. This organization is shown in the

following block schematic.

 Address Bus (k bits) Main Memory upto 2k addressable locations Word length = n bits Data

bus (n bits) Control Bus (Read, Write, MFC, Byte Specifier etc) MAR MDR CPU

Some Basic Concepts

 Memory Access Times: - It is a useful measure of the speed of the memory unit. It is the time

that elapses between the initiation of an operation and the completion of that operation (for

example, the time between READ and MFC).

Memory Cycle Time :- It is an important measure of the memory system. It is the minimum

time delay required between the initiations of two successive memory operations (for

example, the time between two successive READ operations). The cycle time is usually

slightly longer than the access time.

Random Access Memory (RAM):

Computer Organization and Architecture

 Page 107

A memory unit is called a Random Access Memory if any location can be accessed for a READ

or WRITE operation in some fixed amount of time that is independent of the location’s

address. Main memory units are of this type. This distinguishes them from serial or partly

serial access storage devices such as magnetic tapes and disks which are used as the

secondary storage device.

Cache Memory:-

The CPU of a computer can usually process instructions and data faster than they can be

fetched from compatibly priced main memory unit. Thus the memory cycle time become the

bottleneck in the system. One way to reduce the memory access time is to use cache memory.

This is a small and fast memory that is inserted between the larger, slower main memory and

the CPU. This holds the currently active segments of a program and its data. Because of the

locality of address references, the CPU can, most of the time, find the relevant information in

the cache memory itself (cache hit) and infrequently needs access to the main memory (cache

miss) with suitable size of the cache memory, cache hit rates of over 90% are possible leading

to a cost-effective increase in the performance of the system.

Memory Interleaving: -

This technique divides the memory system into a number of memory modules and arranges

addressing so that successive words in the address space are placed in different modules.

When requests for memory access involve consecutive addresses, the access will be to

different modules. Since parallel access to these modules is possible, the

average rate of fetching words from the Main Memory can be increased.

Virtual Memory: -

In a virtual memory System, the address generated by the CPU is referred to as a virtual or

logical address. The corresponding physical address can be different and the required

mapping is implemented by a special memory control unit, often called the memory

management unit. The mapping function itself may be changed during program execution

according to system requirements.

Because of the distinction made between the logical (virtual) address space and the

physical address space; while the former can be as large as the addressing capability of the

CPU, the actual physical memory can be much smaller. Only the active portion of the virtual

address space is mapped onto the physical memory and the rest of the virtual address space

Computer Organization and Architecture

 Page 108

is mapped onto the bulk storage device used. If the addressed information is in the Main

Memory (MM), it is accessed and execution proceeds.

 Otherwise, an exception is generated, in response to which the memory management

unit transfers a contiguous block of words containing the desired word from the bulk storage

unit to the MM, displacing some block that is currently inactive. If the memory is managed in

such a way that, such transfers are required relatively infrequency (ie the CPU will generally

find the required information in the MM), the virtual memory system can provide a

reasonably good performance and succeed in creating an illusion of a large memory with a

small, in expensive MM.

Internal Organization of Semiconductor Memory Chips:-

Memory chips are usually organized in the form of an array of cells, in which each cell is

capable of storing one bit of information. A row of cells constitutes a memory word, and the

cells of a row are connected to a common line referred to as the word line, and this line is

driven by the address decoder on the chip. The cells in each column are

connected to a sense/write circuit by two lines known as bit lines. The sense/write circuits

are connected to the data input/output lines of the chip. During a READ operation, the

Sense/Write circuits sense, or read, the information stored in the cells selected by a word line

and transmit this information to the output lines. During a write operation, they receive input

information and store it in the cells of the selected word.

The following figure shows such an organization of a memory chip consisting of 16 words of 8

bits each, which is usually referred to as a 16 x 8 organization.

The data input and the data output of each Sense/Write circuit are connected to a single bi-

directional data line in order to reduce the number of pins required. One control line, the

R/W (Read/Write) input is used a specify the required operation and another control line, the

CS (Chip Select) input is used to select a given chip in a multichip

memory system. This circuit requires 14 external connections, and allowing 2 pins for power

supply and ground connections, can be manufactured in the form of a 16-pin chip. It can store

16 x 8 = 128 bits. Another type of organization for 1k x 1 format is shown below:

Computer Organization and Architecture

 Page 109

The 10-bit address is divided into two groups of 5 bits each to form the row and column

addresses for the cell array. A row address selects a row of 32 cells, all of which are accessed

in parallel. One of these, selected by the column address, is connected to the external data

lines by the input and output multiplexers. This structure can store 1024 bits, can be

implemented in a 16-pin chip.

A Typical Memory Cell

Semiconductor memories may be divided into bipolar and MOS types. They may be compared

as follows:

Computer Organization and Architecture

 Page 110

Two transistor inverters connected to implement a basic flip-flop. The cell is connected to one

word line and two bits lines as shown. Normally, the bit lines are kept at about 1.6V, and the

word line is kept at a slightly higher voltage of about 2.5V. Under these conditions, the two

diodes D1 and D2 are reverse biased. Thus, because no current flows through the diodes, the

cell is isolated from the bit lines.

Read Operation:

Let us assume the Q1 on and Q2 off represents a 1 to read the contents of a given cell, the

voltage on the corresponding word line is reduced from 2.5 V to approximately 0.3 V. This

causes one of the diodes D1 or D2 to become forward-biased, depending on whether the

transistor Q1 or Q2 is conducting. As a result, current flows from bit line b when the cell is in

the 1 state and from bit line b when the cell is in the 0 state. The Sense/Write circuit at the

end of each pair of bit lines monitors the current on lines b and b’ and sets the output bit line

accordingly.

Write Operation:

While a given row of bits is selected, that is, while the voltage on the corresponding word line

is 0.3V, the cells can be individually forced to either the 1 state by applying a positive voltage

of about 3V to line b’ or to the 0 state by driving line b. This function is performed by the

Sense/Write circuit.

MOS Memory Cell:

MOS technology is used extensively in Main Memory Units. As in the case of bipolar

memories, many MOS cell configurations are possible. The simplest of these is a flip-flop

circuit. Two transistors T1 and T2 are connected to implement a flip-flop. Active pull-up to

VCC is provided through T3 and T4. Transistors T5 and T6 act as switches that can be opened

or closed under control of the word line. For a read operation, when the cell is selected, T5 or

T6 is closed and the corresponding flow of current through b or b’ is sensed by the

sense/write circuits to set the output bit line accordingly. For a write operation, the bit is

selected and a positive voltage is applied on the appropriate bit line, to store a 0 or 1. This

configuration is shown below:

Computer Organization and Architecture

 Page 111

Static Memories Vs Dynamic Memories:-

Bipolar as well as MOS memory cells using a flip-flop like structure to store information can

maintain the information as long as current flow to the cell is maintained. Such memories are

called static memories. In contracts, Dynamic memories require not only the maintaining of a

power supply, but also a periodic “refresh” to maintain the information stored in them.

Dynamic memories can have very high bit densities and very lower power consumption

relative to static memories and are thus generally used to realize the main memory unit.

Dynamic Memories:-

The basic idea of dynamic memory is that information is stored in the form of a charge on the

capacitor. An example of a dynamic memory cell is shown below:

When the transistor T is turned on and an appropriate voltage is applied to the bit line,

information is stored in the cell, in the form of a known amount of charge stored on the

capacitor. After the transistor is turned off, the capacitor begins to discharge. This is caused

by the capacitor’s own leakage resistance and the very small amount of current that still flows

through the transistor. Hence the data is read correctly only if is read before the charge on the

capacitor drops below some threshold value. During a Read

operation, the bit line is placed in a high-impedance state, the transistor is turned on and a

sense circuit connected to the bit line is used to determine whether the charge on the

capacitor is above or below the threshold value. During such a Read, the charge on the

capacitor is restored to its original value and thus the cell is refreshed with every read

operation.

Computer Organization and Architecture

 Page 112

Typical Organization of a Dynamic Memory Chip:-

The cells are organized in the form of a square array such that the high-and lower-order 8 bits

of the 16-bit address constitute the row and column addresses of a cell, respectively. In order

to reduce the number of pins needed for external connections, the row and column address

are multiplexed on 8 pins.

To access a cell, the row address is applied first. It is loaded into the row address latch

in response to a single pulse on the Row Address Strobe (RAS) input. This selects a row of

cells. Now, the column address is applied to the address pins and is loaded into the column

address latch under the control of the Column Address Strobe (CAS) input and this address

selects the appropriate sense/write circuit. If the R/W signal indicates a Read operation, the

output of the selected circuit is transferred to the data output. Do. For a write operation, the

data on the DI line is used to overwrite the cell selected.

It is important to note that the application of a row address causes all the cells on the

corresponding row to be read and refreshed during both Read and Write operations. To

ensure that the contents of a dynamic memory are maintained, each row of cells must be

addressed periodically, typically once every two milliseconds. A Refresh circuit performs this

function. Some dynamic memory chips in-corporate a refresh facility the chips themselves

and hence they appear as static memories to the user! such chips are often referred to as

Pseudostatic.

Another feature available on many dynamic memory chips is that once the row

address is loaded, successive locations can be accessed by loading only column addresses.

Computer Organization and Architecture

 Page 113

Such block transfers can be carried out typically at a rate that is double that for transfers

involving random addresses. Such a feature is useful when memory access follow a regular

pattern, for example, in a graphics terminal Because of their high density and low cost,

dynamic memories are widely used in the main memory units of computers. Commercially

available chips range in size from 1k to 4M bits or more, and are available in various

organizations like 64k x 1, 16k x 4, 1MB x 1 etc.

RAID (Redundant Array of Independent Disks)

RAID (redundant array of independent disks; originally redundant array of inexpensive

disks) provides a way of storing the same data in different places (thus, redundantly) on

multiple hard disks (though not all RAID levels provide redundancy). By placing data on

multiple disks, input/output (I/O) operations can overlap in a balanced way, improving

performance. Since multiple disks increase the mean time between failures (MTBF), storing

data redundantly also increases fault tolerance.

RAID arrays appear to the operating system (OS) as a single logical hard disk. RAID

employs the technique of disk mirroring or disk striping, which involves partitioning each

drive's storage space into units ranging from a sector (512 bytes) up to several megabytes.

The stripes of all the disks are interleaved and addressed in order.

In a single-user system where large records, such as medical or other scientific images,

are stored, the stripes are typically set up to be small (perhaps 512 bytes) so that a single

record spans all disks and can be accessed quickly by reading all disks at the same time.

In a multi-user system, better performance requires establishing a stripe wide enough to hold

the typical or maximum size record. This allows overlapped disk I/O across drives.

Standard RAID levels

RAID 0: This configuration has striping but no redundancy of data. It offers the best

performance but no fault-tolerance.

http://searchstorage.techtarget.com/definition/redundant
http://searchstorage.techtarget.com/definition/hard-disk
http://whatis.techtarget.com/definition/redundancy
http://searchcio-midmarket.techtarget.com/definition/input-output
http://whatis.techtarget.com/definition/MTBF-mean-time-between-failures
http://searchcio-midmarket.techtarget.com/definition/fault-tolerant
http://whatis.techtarget.com/definition/operating-system-OS
http://searchstorage.techtarget.com/definition/disk-mirroring
http://searchstorage.techtarget.com/definition/disk-striping
http://searchstorage.techtarget.com/definition/partition
http://searchstorage.techtarget.com/definition/sector
http://searchstorage.techtarget.com/definition/byte
http://searchstorage.techtarget.com/definition/megabyte
http://searchoracle.techtarget.com/definition/record
http://searchstorage.techtarget.com/definition/RAID-0-disk-striping

Computer Organization and Architecture

 Page 114

RAID 1: Also known as disk mirroring, this configuration consists of at least two drives that

duplicate the storage of data. There is no striping. Read performance is improved since either

disk can be read at the same time. Write performance is the same as for single disk storage.

RAID 2: This configuration uses striping across disks with some disks storing error checking

and correcting (ECC) information. It has no advantage over RAID 3 and is no longer used.

RAID 3: This technique uses striping and dedicates one drive to storing parity information.

The embedded ECC information is used to detect errors. Data recovery is accomplished by

calculating the exclusive OR (XOR) of the information recorded on the other drives. Since an

I/O operation addresses all drives at the same time, RAID 3 cannot overlap I/O. For this

reason, RAID 3 is best for single-user systems with long record applications.

http://searchstorage.techtarget.com/definition/RAID-2-redundant-array-of-independent-disks
http://searchnetworking.techtarget.com/definition/ECC
http://searchstorage.techtarget.com/definition/RAID-3-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/parity
http://searchdisasterrecovery.techtarget.com/definition/data-recovery

Computer Organization and Architecture

 Page 115

RAID 4: This level uses large stripes, which means you can read records from any single

drive. This allows you to use overlapped I/O for read operations. Since all write operations

have to update the parity drive, no I/O overlapping is possible. RAID 4 offers no advantage

over RAID 5.

RAID 5: This level is based on block-level striping with parity. The parity information is

striped across each drive, allowing the array to function even if one drive were to fail. The

array’s architecture allows read and write operations to span multiple drives. This results in

performance that is usually better than that of a single drive, but not as high as that of a RAID

0 array. RAID 5 requires at least three disks, but it is often recommended to use at least five

disks for performance reasons.

RAID 5 arrays are generally considered to be a poor choice for use on write-intensive

systems because of the performance impact associated with writing parity information. When

a disk does fail, it can take a long time to rebuild a RAID 5 array. Performance is usually

degraded during the rebuild time and the array is vulnerable to an additional disk failure until

the rebuild is complete.

http://searchstorage.techtarget.com/definition/RAID-4-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/RAID-5-redundant-array-of-independent-disks
http://searchsqlserver.techtarget.com/definition/block

Computer Organization and Architecture

 Page 116

RAID 6: This technique is similar to RAID 5 but includes a second parity scheme that is

distributed across the drives in the array. The use of additional parity allows the array to

continue to function even if two disks fail simultaneously. However, this extra protection

comes at a cost. RAID 6 arrays have a higher cost per gigabyte (GB) and often have slower

write performance than RAID 5 arrays.

Direct Memory Access (DMA)

DMA stands for "Direct Memory Access" and is a method of transferring data from

the computer's RAM to another part of the computer without processing it using the CPU.

While most data that is input or output from your computer is processed by the CPU, some

data does not require processing, or can be processed by another device.

In these situations, DMA can save processing time and is a more efficient way to move

data from the computer's memory to other devices. In order for devices to use direct memory

access, they must be assigned to a DMA channel. Each type of port on a computer has a set of

DMA channels that can be assigned to each connected device. For example, a PCI controller

and a hard drive controller each have their own set of DMA channels.

http://searchstorage.techtarget.com/definition/RAID-6-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/gigabyte
http://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
http://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail

Computer Organization and Architecture

 Page 117

For example, a sound card may need to access data stored in the computer's RAM, but since it

can process the data itself, it may use DMA to bypass the CPU. Video cards that support DMA

can also access the system memory and process graphics without needing the CPU. Ultra DMA

hard drives use DMA to transfer data faster than previous hard drives that required the data

to first be run through the CPU.

An alternative to DMA is the Programmed Input/Output (PIO) interface in which all

data transmitted between devices goes through the processor. A newer protocol for the

ATAIIDE interface is Ultra DMA, which provides a burst data transfer rate up to 33 mbps.

Hard drives that come with Ultra DMAl33 also support PIO modes 1, 3, and 4, and multiword

DMA mode 2 at 16.6 mbps.

DMA Transfer Types

Memory To Memory Transfer

 In this mode block of data from one memory address is moved to another memory address.

In this mode current address register of channel 0 is used to point the source address and the

current address register of channel is used to point the destination address in the first

transfer cycle, data byte from the source address is loaded in the temporary register of the

DMA controller and in the next transfer cycle the data from the temporary register is stored

in the memory pointed by destination address.

After each data transfer current address registers are decremented or incremented

according to current settings. The channel 1 current word count register is also decremented

by 1 after each data transfer. When the word count of channel 1 goes to FFFFH, a TC is

generated which activates EOP output terminating the DMA service.

Auto initialize

In this mode, during the initialization the base address and word count registers are loaded

simultaneously with the current address and word count registers by the microprocessor.

The address and the count in the base registers remain unchanged throughout the DMA

service.

After the first block transfer i.e. after the activation of the EOP signal, the original

values of the current address and current word count registers are automatically restored

from the base address and base word count register of that channel. After auto initialization

the channel is ready to perform another DMA service, without CPU intervention.

Computer Organization and Architecture

 Page 118

DMA Controller

The controller is integrated into the processor board and manages all DMA data transfers.

Transferring data between system memory and an 110 device requires two steps. Data goes

from the sending device to the DMA controller and then to the receiving device. The

microprocessor gives the DMA controller the location, destination, and amount of data that is

to be transferred. Then the DMA controller transfers the data, allowing the microprocessor to

continue with other processing tasks.

When a device needs to use the Micro Channel bus to send or receive data, it competes

with all the other devices that are trying to gain control of the bus. This process is known as

arbitration. The DMA controller does not arbitrate for control of the BUS instead; the I/O

device that is sending or receiving data (the DMA slave) participates in arbitration. It is the

DMA controller, however, that takes control of the bus when the central arbitration control

point grants the DMA slave's request.

DMA vs. interrupts vs. polling

A diagram showing the position of the DMA in relation to peripheral devices, the CPU and
internal memory

 Works in the background without CPU intervention

 This speed up data transfer and CPU speed

 The DMA is used for moving large files since it would take too much of CPU capacity

Interrupt Systems

 Interrupts take up time of the CPU

http://dis-dpcs.wikispaces.com/6.5.5+DMA+vs.+interrupts+vs.+polling
http://dis-dpcs.wikispaces.com/6.5.3+Interrupts+and+Polling

Computer Organization and Architecture

 Page 119

 they work by asking for the use of the CPU by sending the interrupt to which the CPU

responds

o Note: In order to save time the CPU does not check if it has to respond

 Interrupts are used when a task has to be performed immediately

Polling

Polling requires the CPU to actively monitor the process

 The major advantage is that the polling can be adjusted to the needs of the device

 polling is a low level process since the peripheral device is not in need of a quick response

UNIT – V (10 Lectures)

http://dis-dpcs.wikispaces.com/6.5.3+Interrupts+and+Polling

Computer Organization and Architecture

 Page 120

MULTIPROCESSORS: Characteristics of multiprocessors, interconnection structures, inter

processor arbitration, inter processor communication and synchronization, cache coherence,

shared memory multiprocessors.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-13 Pages: 489-514

Characteristics of Multiprocessors

A multiprocessor system is an interconnection of two or more CPU, with memory and

input-output equipment. As defined earlier, multiprocessors can be put under MIMD

category. The term multiprocessor is sometimes confused with the term multi computers.

Though both support concurrent operations, there is an important difference between a

system with multiple computers and a system with multiple processors.

In a multi computers system, there are multiple computers, with their own operating

systems, which communicate with each other, if needed, through communication links. A

multiprocessor system, on the other hand, is controlled by a single operating system, which

coordinate the activities of the various processors, either through shared memory or inter

processor messages.

The advantages of multiprocessor systems are:

· Increased reliability because of redundancy in processors

· Increased throughput because of execution of multiple jobs in parallel portions of the

same job in parallel

A single job can be divided into independent tasks, either manually by the programmer, or by

the compiler, which finds the portions of the program that are data independent, and can be

executed in parallel. The multiprocessors are further classified into two groups depending on

the way their memory is organized. The processors with shared memory are called tightly

coupled or shared memory processors.

The information in these processors is shared through the common memory. Each of

the processors can also have their local memory too. The other class of multiprocessors is

loosely coupled or distributed memory multi-processors. In this, each processor has their

own private memory, and they share information with each other through interconnection

switching scheme or message passing.

Computer Organization and Architecture

 Page 121

The principal characteristic of a multiprocessor is its ability to share a set of main

memory and some I/O devices. This sharing is possible through some physical connections

between them called the interconnection structures.

Inter processor Arbitration

Computer system needs buses to facilitate the transfer of information between its

various components. For example, even in a uniprocessor system, if the CPU has to access a

memory location, it sends the address of the memory location on the address bus. This

address activates a memory chip. The CPU then sends a red signal through the control bus, in

the response of which the memory puts the data on the address bus.

This address activates a memory chip. The CPU then sends a read signal through the

control bus, in the response of which the memory puts the data on the data bus. Similarly, in a

multiprocessor system, if any processor has to read a memory location from the shared areas,

it follows the similar routine.

There are buses that transfer data between the CPUs and memory. These are called

memory buses. An I/O bus is used to transfer data to and from input and output devices. A

bus that connects major components in a multiprocessor system, such as CPUs, I/Os, and

memory is called system bus. A processor, in a multiprocessor system, requests the access of

a component through the system bus.

In case there is no processor accessing the bus at that time, it is given then control of

the bus immediately. If there is a second processor utilizing the bus, then this processor has

to wait for the bus to be freed. If at any time, there is request for the services of the bus by

more than one processor, then the arbitration is performed to resolve the conflict. A bus

controller is placed between the local bus and the system bus to handle this.

Inter processor Communication and Synchronization

In a multiprocessor system, it becomes very necessary, that there be proper communication

protocol between the various processors. In a shared memory multiprocessor system, a

common area in the memory is provided, in which all the messages that need to be

communicated to other processors are written.

Computer Organization and Architecture

 Page 122

A proper synchronization is also needed whenever there is a race of two or more

processors for shared resources like I/O resources. The operating system in this case is given

the task of allocating the resources to the various processors in a way, that at any time not

more than one processor use the resource.

A very common problem that can occur when two or more resources are trying to

access a resource which can be modified. For example processor 1 and 2 are simultaneously

trying to access memory location 100. Say the processor 1 is writing on to the location while

processor 2 is reading it. The chances are that processor 2 will end up reading erroneous

data. Such kind of resources which need to be protected from simultaneous access of more

than one processors are called critical sections. The following assumptions are made

regarding the critical sections:

- Mutual exclusion: At most one processor can be in a critical section at a time

-Termination : The critical section is executed in a finite time

- Fair scheduling: A process attempting to enter the critical section will eventually do so in a

finite time.

A binary value called a semaphore is usually used to indicate whether a processor is currently

Executing the critical section.

Cache Coherence

As discussed in unit 2, cache memories are high speed buffers which are inserted

between the processor and the main memory to capture those portions of the contents of

main memory which are currently in use. These memories are five to ten times faster than

main memories, and therefore, reduce the overall access time. In a multiprocessor system,

with shared memory, each processor has its own set of private cache.

Multiple copies of the cache are provided with each processor to reduce the access

time. Each processor, whenever accesses the shared memory, also updates its private cache.

This introduced the problem of cache coherence, which may result in data inconsistency. That

is, several copies of the same data may exist in different caches at any given time.

For example, let us assume there are two processors x and y. Both have the same copy of the

cache. Processor x, produces data 'a' which is to be consumed by processor y. Processor

update the value of 'a' in its own private copy of the cache. As it does not have any access to

Computer Organization and Architecture

 Page 123

the private copy of cache of processor y, the processor y continues to use the variable 'a' with

old value, unless it is informed of the change.

Thus, in such kind of situations if the system is to perform correctly, every updation in

the cache should be informed to all the processors, so that they can make necessary changes

in their private copies of the cache.

